Weibing Xue , Rui Zhao , Tongda Liu , Xin Ran , Rong Liu , Tonghua Lu , Renzhong Wei , Guanben Du , Jun Li , Long Yang
{"title":"Innovative bio-based bamboo adhesive: Performance breakthrough through the host-guest interaction of cyclodextrin and adamantane","authors":"Weibing Xue , Rui Zhao , Tongda Liu , Xin Ran , Rong Liu , Tonghua Lu , Renzhong Wei , Guanben Du , Jun Li , Long Yang","doi":"10.1016/j.colsurfa.2025.136765","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, the use of agricultural, forestry, and fishery residues and wastes to develop green and environmentally friendly bio-based adhesives has gradually become the industry development trend and is an effective technical path to implement energy saving, environmental protection, and achieve sustainable development. The present work cleverly leverages the unique advantages of bio-based chitosan and 1-adamantane carboxylic acid to develop an innovative adamantane-chitosan bamboo adhesive through an amidation reaction. Meanwhile, sulfhydryl-functionalized cyclodextrins were prepared, and the cyclodextrin host molecules were successfully anchored to the bamboo surface through bridging 3-mercaptopropyltrimethoxysilane. During the bonding process, the adamantane guest molecules on the adhesive and the cyclodextrin host molecules on the bamboo surface were subject-guest recognized, resulting in the construction of a host-guest chemical bonding interface to achieve a breakthrough in bonding performance. The dry, hot, and boiling water strength of the bamboo bonded specimens without the formation of supramolecular bonding interface were 7.8, 6.4, and 4.9 MPa, respectively. After constructing the supramolecular bonding interface, the dry, hot, and boiling water strengths were enhanced by 37.2 %, 12.5 %, and 30.6 % to 10.7 MPa, 7.2 MPa, and 6.4 MPa, respectively. The results demonstrated that the host-guest recognition in the supramolecular bonding interface effectively enhanced the bonding performance. The present work utilizes biomass materials and supramolecular forces to achieve high-performance bonding of substrates, breaking the bonding performance enhancement mechanism of traditional adhesives and providing a new way for technological innovation in the field of bonding.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"716 ","pages":"Article 136765"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927775725006685","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, the use of agricultural, forestry, and fishery residues and wastes to develop green and environmentally friendly bio-based adhesives has gradually become the industry development trend and is an effective technical path to implement energy saving, environmental protection, and achieve sustainable development. The present work cleverly leverages the unique advantages of bio-based chitosan and 1-adamantane carboxylic acid to develop an innovative adamantane-chitosan bamboo adhesive through an amidation reaction. Meanwhile, sulfhydryl-functionalized cyclodextrins were prepared, and the cyclodextrin host molecules were successfully anchored to the bamboo surface through bridging 3-mercaptopropyltrimethoxysilane. During the bonding process, the adamantane guest molecules on the adhesive and the cyclodextrin host molecules on the bamboo surface were subject-guest recognized, resulting in the construction of a host-guest chemical bonding interface to achieve a breakthrough in bonding performance. The dry, hot, and boiling water strength of the bamboo bonded specimens without the formation of supramolecular bonding interface were 7.8, 6.4, and 4.9 MPa, respectively. After constructing the supramolecular bonding interface, the dry, hot, and boiling water strengths were enhanced by 37.2 %, 12.5 %, and 30.6 % to 10.7 MPa, 7.2 MPa, and 6.4 MPa, respectively. The results demonstrated that the host-guest recognition in the supramolecular bonding interface effectively enhanced the bonding performance. The present work utilizes biomass materials and supramolecular forces to achieve high-performance bonding of substrates, breaking the bonding performance enhancement mechanism of traditional adhesives and providing a new way for technological innovation in the field of bonding.
期刊介绍:
Colloids and Surfaces A: Physicochemical and Engineering Aspects is an international journal devoted to the science underlying applications of colloids and interfacial phenomena.
The journal aims at publishing high quality research papers featuring new materials or new insights into the role of colloid and interface science in (for example) food, energy, minerals processing, pharmaceuticals or the environment.