One Stone, Two Birds Strategy for Synthesized Metallic Bi-Doped ZnWO4-Enriched Oxygen Defection for Enhancing Marine Bacterial Inactivation

IF 3.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Chenglin Zhang, Jiangpeng Li, Qiuchen He, Ziming Zhao, Wenjun Jiang, Su Zhan* and Feng Zhou*, 
{"title":"One Stone, Two Birds Strategy for Synthesized Metallic Bi-Doped ZnWO4-Enriched Oxygen Defection for Enhancing Marine Bacterial Inactivation","authors":"Chenglin Zhang,&nbsp;Jiangpeng Li,&nbsp;Qiuchen He,&nbsp;Ziming Zhao,&nbsp;Wenjun Jiang,&nbsp;Su Zhan* and Feng Zhou*,&nbsp;","doi":"10.1021/acs.cgd.4c0170010.1021/acs.cgd.4c01700","DOIUrl":null,"url":null,"abstract":"<p >Deactivating the concentration of marine microorganisms is suitable and proper for ballast water treatment. In here, a promising strategy has been presented to create massive oxygen vacancies synergistic with metallic Bi nanoparticles on ZnWO<sub>4</sub> for inactivating marine bacteria in seawater, demonstrating that the paramount incorporation of metallic Bi nanoparticles and 2BZWO (Bi/ZnWO<sub>4</sub>) samples exhibits superior photocatalytic sterilization, in which the sterilization efficiency of 2BZWO is 2.83 times that of pure ZnWO<sub>4</sub>. The co-incorporation of metallic Bi nanoparticles and oxygen vacancies significantly enhanced the absorption of visible light and enrichment of the photogenerated electrons, promoting the separation of charge carriers. Moreover, first-principles calculations demonstrate that the coeffect of metallic Bi nanoparticles and oxygen vacancies guided the reconfiguration of the active sites and electrons flowing direction. Results from this study provide a creative strategy on controllable Bi/ZnWO<sub>4</sub> synthesis to manipulate the photocatalytic inactivation of marine bacteria.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"25 7","pages":"2071–2082 2071–2082"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.4c01700","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Deactivating the concentration of marine microorganisms is suitable and proper for ballast water treatment. In here, a promising strategy has been presented to create massive oxygen vacancies synergistic with metallic Bi nanoparticles on ZnWO4 for inactivating marine bacteria in seawater, demonstrating that the paramount incorporation of metallic Bi nanoparticles and 2BZWO (Bi/ZnWO4) samples exhibits superior photocatalytic sterilization, in which the sterilization efficiency of 2BZWO is 2.83 times that of pure ZnWO4. The co-incorporation of metallic Bi nanoparticles and oxygen vacancies significantly enhanced the absorption of visible light and enrichment of the photogenerated electrons, promoting the separation of charge carriers. Moreover, first-principles calculations demonstrate that the coeffect of metallic Bi nanoparticles and oxygen vacancies guided the reconfiguration of the active sites and electrons flowing direction. Results from this study provide a creative strategy on controllable Bi/ZnWO4 synthesis to manipulate the photocatalytic inactivation of marine bacteria.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信