La Doping LiNiO2 Cathode to Immobilize the Lattice Oxygen for Highly Stable Lithium-Ion Batteries

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mei-Tong Wei, Lu Wu, Zhi-Yi Hu*, Kun-Xiao Wu, Jing-Yi Sun, Zhi-Wen Yin, Zhi-Rong Li, Xiao-Yu Yang, Yu Li*, Gustaaf Van Tendeloo and Bao-Lian Su*, 
{"title":"La Doping LiNiO2 Cathode to Immobilize the Lattice Oxygen for Highly Stable Lithium-Ion Batteries","authors":"Mei-Tong Wei,&nbsp;Lu Wu,&nbsp;Zhi-Yi Hu*,&nbsp;Kun-Xiao Wu,&nbsp;Jing-Yi Sun,&nbsp;Zhi-Wen Yin,&nbsp;Zhi-Rong Li,&nbsp;Xiao-Yu Yang,&nbsp;Yu Li*,&nbsp;Gustaaf Van Tendeloo and Bao-Lian Su*,&nbsp;","doi":"10.1021/acs.nanolett.5c0003110.1021/acs.nanolett.5c00031","DOIUrl":null,"url":null,"abstract":"<p >LiNiO<sub>2</sub> (LNO) with a high theoretical capacity and entirely free of cobalt has aroused much attention as a promising cathode material for lithium-ion batteries (LIBs). The rapid capacity decay, however, obstructs its commercialization. We first propose a strategy of La lattice-doping in the LNO (La-LNO) as a high-stability cathode for LIBs. Density-functional theory calculations suggest that the La dopant occupies the Ni-sites to stabilize the lattice oxygen due to a strengthening of the transition metal–oxygen bonds and mitigation of the charge compensation. La lattice-doped LNO cathode materials were fabricated successfully and had a specific capacity of 159.6 mAh g<sup>–1</sup> after 100 cycles at 1 C with a capacity retention of 94.2% and a voltage retention of 99.9%. Atomic characterization reveals that La-LNO effectively inhibits the oxygen release and phase transformation during the cycling process. Our strategy provides leading guidance for designing practical high-performance LNO cathode materials for advanced LIBs.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 13","pages":"5265–5273 5265–5273"},"PeriodicalIF":9.6000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c00031","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

LiNiO2 (LNO) with a high theoretical capacity and entirely free of cobalt has aroused much attention as a promising cathode material for lithium-ion batteries (LIBs). The rapid capacity decay, however, obstructs its commercialization. We first propose a strategy of La lattice-doping in the LNO (La-LNO) as a high-stability cathode for LIBs. Density-functional theory calculations suggest that the La dopant occupies the Ni-sites to stabilize the lattice oxygen due to a strengthening of the transition metal–oxygen bonds and mitigation of the charge compensation. La lattice-doped LNO cathode materials were fabricated successfully and had a specific capacity of 159.6 mAh g–1 after 100 cycles at 1 C with a capacity retention of 94.2% and a voltage retention of 99.9%. Atomic characterization reveals that La-LNO effectively inhibits the oxygen release and phase transformation during the cycling process. Our strategy provides leading guidance for designing practical high-performance LNO cathode materials for advanced LIBs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信