Nitrogen Doping Strategy in SiO2 Insulators for Stable and Hydrogen-Resistant ALD–IGZO TFTs

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Tae Heon Kim, Dong-Gyu Kim, Sang-Hyun Kim, Tae-Kyung Kim, Ki-Cheol Song, Yeonhee Lee and Jin-Seong Park*, 
{"title":"Nitrogen Doping Strategy in SiO2 Insulators for Stable and Hydrogen-Resistant ALD–IGZO TFTs","authors":"Tae Heon Kim,&nbsp;Dong-Gyu Kim,&nbsp;Sang-Hyun Kim,&nbsp;Tae-Kyung Kim,&nbsp;Ki-Cheol Song,&nbsp;Yeonhee Lee and Jin-Seong Park*,&nbsp;","doi":"10.1021/acsami.4c2274810.1021/acsami.4c22748","DOIUrl":null,"url":null,"abstract":"<p >In–Ga–Zn–O (IGZO) thin-film transistors (TFTs) fabricated via atomic layer deposition (ALD) show promise for future display applications. However, they face challenges related to bias stability and hydrogen vulnerability. We propose an N doping strategy for SiO<sub>2</sub> gate insulators (GI) using nitrous oxide (N<sub>2</sub>O) plasma reactants to control the active layer/GI interface and GI bulk properties of top-gate bottom-contact (TG–BC) IGZO TFTs. Increasing the N content in the SiO<sub>2</sub> from 0.7 to 2.2 at.% by adjusting N<sub>2</sub>O plasma power from 100 to 300 W resulted in a 10-fold increase in trap densities within the interface and IGZO bulk region. Positive bias temperature stress (PBTS) stability exhibited a U-shaped threshold voltage (V<sub>TH</sub>) shift from −4.1 to 4.9 V, driven by H concentration in the GI and interface trap densities. After H<sub>2</sub> annealing, devices demonstrated improved H resistivity, with the V<sub>TH</sub> shift reduced from −2.1 to 0.0 V, attributed to H being chemically trapped by N atoms with lone pairs or unbonded electrons. Furthermore, a hybrid GI structure combining N<sub>2</sub>O plasma powers of 150 and 300 W further enhanced PBTS stability and H resistivity by 60% and 71%, respectively, demonstrating the effectiveness of this approach.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 13","pages":"19928–19937 19928–19937"},"PeriodicalIF":8.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.4c22748","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In–Ga–Zn–O (IGZO) thin-film transistors (TFTs) fabricated via atomic layer deposition (ALD) show promise for future display applications. However, they face challenges related to bias stability and hydrogen vulnerability. We propose an N doping strategy for SiO2 gate insulators (GI) using nitrous oxide (N2O) plasma reactants to control the active layer/GI interface and GI bulk properties of top-gate bottom-contact (TG–BC) IGZO TFTs. Increasing the N content in the SiO2 from 0.7 to 2.2 at.% by adjusting N2O plasma power from 100 to 300 W resulted in a 10-fold increase in trap densities within the interface and IGZO bulk region. Positive bias temperature stress (PBTS) stability exhibited a U-shaped threshold voltage (VTH) shift from −4.1 to 4.9 V, driven by H concentration in the GI and interface trap densities. After H2 annealing, devices demonstrated improved H resistivity, with the VTH shift reduced from −2.1 to 0.0 V, attributed to H being chemically trapped by N atoms with lone pairs or unbonded electrons. Furthermore, a hybrid GI structure combining N2O plasma powers of 150 and 300 W further enhanced PBTS stability and H resistivity by 60% and 71%, respectively, demonstrating the effectiveness of this approach.

Abstract Image

稳定耐氢ALD-IGZO tft中SiO2绝缘子的氮掺杂策略
通过原子层沉积(ALD)制备的In-Ga-Zn-O (IGZO)薄膜晶体管(TFTs)在未来的显示应用中显示出前景。然而,它们面临着与偏置稳定性和氢脆弱性相关的挑战。我们提出了一种使用氧化亚氮(N2O)等离子体反应物的SiO2栅极绝缘子(GI)掺杂策略,以控制顶栅底接触(TG-BC) IGZO TFTs的活性层/GI界面和GI体性能。将SiO2中的N含量由0.7 at提高到2.2 at。通过将N2O等离子体功率从100 W调整到300 W,可以使界面和IGZO本体区域内的陷阱密度增加10倍。正偏置温度应力(PBTS)稳定性表现出u型阈值电压(VTH)从- 4.1到4.9 V的变化,这是由GI中的H浓度和界面陷阱密度驱动的。H2退火后,器件表现出更高的H电阻率,VTH位移从- 2.1减小到0.0 V,这归因于H被具有孤对或未成键电子的N原子化学捕获。此外,结合N2O等离子体功率为150和300 W的混合GI结构进一步提高了PBTS的稳定性和H电阻率,分别提高了60%和71%,证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信