Monitoring of Paracetamol Solvent-Mediated Phase Transformation in Seeded Batch Crystallization Processes

IF 3.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Carla Kalakech*, Asma Madmar, Emilie Gagnière, Géraldine Agusti, Denis Mangin, Sylvaine Lafont, Morgane Le Hir, Mathias Monnot, Catherine Charcosset and Elodie Chabanon, 
{"title":"Monitoring of Paracetamol Solvent-Mediated Phase Transformation in Seeded Batch Crystallization Processes","authors":"Carla Kalakech*,&nbsp;Asma Madmar,&nbsp;Emilie Gagnière,&nbsp;Géraldine Agusti,&nbsp;Denis Mangin,&nbsp;Sylvaine Lafont,&nbsp;Morgane Le Hir,&nbsp;Mathias Monnot,&nbsp;Catherine Charcosset and Elodie Chabanon,&nbsp;","doi":"10.1021/acs.cgd.4c0165010.1021/acs.cgd.4c01650","DOIUrl":null,"url":null,"abstract":"<p >Polymorphism control in crystallization processes is critical for ensuring the final quality of active pharmaceutical ingredients (APIs). In the present research, the solvent-mediated phase transformation (SMPT) of paracetamol, a widely used API, from its metastable form II to the stable form I during seeded batch cooling crystallization in isopropyl alcohol/water solution is investigated. The study explores the utility of offline FT-NIR spectroscopy and an inline PAT Blaze900 probe to detect paracetamol polymorphs and monitor polymorphic changes. Key findings demonstrate that FT-NIR offers a robust offline alternative for polymorphism detection and monitoring. The PAT Blaze900 recordings, in terms of chord length counts and distributions, also provide additional information about form II SMPT and are in accordance with the FT-NIR prediction model output. The SMPT kinetics are influenced by operational parameters such as supersaturation and operational and cooling temperature. Optimization of these parameters enabled better control over the SMPT kinetics, paving the way for efficient stabilization of paracetamol metastable form II to 30 min before complete conversion to the most stable form I.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"25 7","pages":"2056–2070 2056–2070"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.4c01650","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polymorphism control in crystallization processes is critical for ensuring the final quality of active pharmaceutical ingredients (APIs). In the present research, the solvent-mediated phase transformation (SMPT) of paracetamol, a widely used API, from its metastable form II to the stable form I during seeded batch cooling crystallization in isopropyl alcohol/water solution is investigated. The study explores the utility of offline FT-NIR spectroscopy and an inline PAT Blaze900 probe to detect paracetamol polymorphs and monitor polymorphic changes. Key findings demonstrate that FT-NIR offers a robust offline alternative for polymorphism detection and monitoring. The PAT Blaze900 recordings, in terms of chord length counts and distributions, also provide additional information about form II SMPT and are in accordance with the FT-NIR prediction model output. The SMPT kinetics are influenced by operational parameters such as supersaturation and operational and cooling temperature. Optimization of these parameters enabled better control over the SMPT kinetics, paving the way for efficient stabilization of paracetamol metastable form II to 30 min before complete conversion to the most stable form I.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信