{"title":"Monitoring of Paracetamol Solvent-Mediated Phase Transformation in Seeded Batch Crystallization Processes","authors":"Carla Kalakech*, Asma Madmar, Emilie Gagnière, Géraldine Agusti, Denis Mangin, Sylvaine Lafont, Morgane Le Hir, Mathias Monnot, Catherine Charcosset and Elodie Chabanon, ","doi":"10.1021/acs.cgd.4c0165010.1021/acs.cgd.4c01650","DOIUrl":null,"url":null,"abstract":"<p >Polymorphism control in crystallization processes is critical for ensuring the final quality of active pharmaceutical ingredients (APIs). In the present research, the solvent-mediated phase transformation (SMPT) of paracetamol, a widely used API, from its metastable form II to the stable form I during seeded batch cooling crystallization in isopropyl alcohol/water solution is investigated. The study explores the utility of offline FT-NIR spectroscopy and an inline PAT Blaze900 probe to detect paracetamol polymorphs and monitor polymorphic changes. Key findings demonstrate that FT-NIR offers a robust offline alternative for polymorphism detection and monitoring. The PAT Blaze900 recordings, in terms of chord length counts and distributions, also provide additional information about form II SMPT and are in accordance with the FT-NIR prediction model output. The SMPT kinetics are influenced by operational parameters such as supersaturation and operational and cooling temperature. Optimization of these parameters enabled better control over the SMPT kinetics, paving the way for efficient stabilization of paracetamol metastable form II to 30 min before complete conversion to the most stable form I.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"25 7","pages":"2056–2070 2056–2070"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.4c01650","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Polymorphism control in crystallization processes is critical for ensuring the final quality of active pharmaceutical ingredients (APIs). In the present research, the solvent-mediated phase transformation (SMPT) of paracetamol, a widely used API, from its metastable form II to the stable form I during seeded batch cooling crystallization in isopropyl alcohol/water solution is investigated. The study explores the utility of offline FT-NIR spectroscopy and an inline PAT Blaze900 probe to detect paracetamol polymorphs and monitor polymorphic changes. Key findings demonstrate that FT-NIR offers a robust offline alternative for polymorphism detection and monitoring. The PAT Blaze900 recordings, in terms of chord length counts and distributions, also provide additional information about form II SMPT and are in accordance with the FT-NIR prediction model output. The SMPT kinetics are influenced by operational parameters such as supersaturation and operational and cooling temperature. Optimization of these parameters enabled better control over the SMPT kinetics, paving the way for efficient stabilization of paracetamol metastable form II to 30 min before complete conversion to the most stable form I.
期刊介绍:
The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials.
Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.