{"title":"Charge Polarization Tunable Interfaces for Perovskite Solar Cells and Modules","authors":"Wenhan Yang, Yuexin Lin, Wenjing Zhu, Fenqi Du, Jin Liu, Yumin Ren, Haibin Wang, Jinfeng Liao, Dejian Yu, Guojia Fang, Meng Li, Rui Zhang, Shengchun Yang, Chao Liang","doi":"10.1002/adma.202502865","DOIUrl":null,"url":null,"abstract":"Interfacial localized charges and interfacial losses from incompatible underlayers are critical factors limiting the efficiency improvement and market-integration of perovskite solar cells (PSCs). Herein, a novel interfacial chemical tuning strategy is proposed involving proton transfer between the amine head of pyridoxamine (PM) and the phosphonic acid anchoring group of [4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz), with simultaneous enhancement of charge delocalization through electrostatic attraction between opposite charged molecules. The Me-4PACz-PM charge polarization interface modulates the nickel oxide (NiO<sub>x</sub>) charge states and the coordination environment at buried interfaces, consequently enhancing p-type conductivity and obtaining a more compatible band arrangement. The high-coverage and wettability of the NiO<sub>x</sub>/Me-4PACz-PM underlayer also facilitate the deposition of high-quality perovskite films, releasing lattice strain and mitigating trap-assisted non-radiative recombination. Attributing to the implementation of charge polarization tunable interfaces, small-area devices and modules with an aperture area of 69 cm<sup>2</sup> achieved impressive power conversion efficiencies (PCEs) of 26.34% (certified 25.48%) and 21.94% (certified 20.50%), respectively, and unencapsulated devices maintained their initial PCEs ≈90% after aging for 2000 h (ISOS-L-1) and 1500 h (ISOS-D-1). The broad applicability of charge polarization tunable interfaces and the successful scaling of large-area modules provide a reference for expanding PSCs applications.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"3 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202502865","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Interfacial localized charges and interfacial losses from incompatible underlayers are critical factors limiting the efficiency improvement and market-integration of perovskite solar cells (PSCs). Herein, a novel interfacial chemical tuning strategy is proposed involving proton transfer between the amine head of pyridoxamine (PM) and the phosphonic acid anchoring group of [4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz), with simultaneous enhancement of charge delocalization through electrostatic attraction between opposite charged molecules. The Me-4PACz-PM charge polarization interface modulates the nickel oxide (NiOx) charge states and the coordination environment at buried interfaces, consequently enhancing p-type conductivity and obtaining a more compatible band arrangement. The high-coverage and wettability of the NiOx/Me-4PACz-PM underlayer also facilitate the deposition of high-quality perovskite films, releasing lattice strain and mitigating trap-assisted non-radiative recombination. Attributing to the implementation of charge polarization tunable interfaces, small-area devices and modules with an aperture area of 69 cm2 achieved impressive power conversion efficiencies (PCEs) of 26.34% (certified 25.48%) and 21.94% (certified 20.50%), respectively, and unencapsulated devices maintained their initial PCEs ≈90% after aging for 2000 h (ISOS-L-1) and 1500 h (ISOS-D-1). The broad applicability of charge polarization tunable interfaces and the successful scaling of large-area modules provide a reference for expanding PSCs applications.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.