Tobias A. Dancker, Mohamed Ibrahem Elhawy, Ramona Rittershauß, Qinghai Tian, Yvonne Schwarz, Markus D. A. Hoffmann, Christopher Carlein, Amanda Wyatt, Vanessa Wahl, Daniel Speyerer, Alaa Kandah, Ulrich Boehm, Leticia Prates Roma, Dieter Bruns, Peter Lipp, Gabriela Krasteva-Christ, Marcel A. Lauterbach
{"title":"Functional Microendoscopy Reveals Calcium Responses of Single Cells in Tracheal Tuft Cells and Kidney Podocytes","authors":"Tobias A. Dancker, Mohamed Ibrahem Elhawy, Ramona Rittershauß, Qinghai Tian, Yvonne Schwarz, Markus D. A. Hoffmann, Christopher Carlein, Amanda Wyatt, Vanessa Wahl, Daniel Speyerer, Alaa Kandah, Ulrich Boehm, Leticia Prates Roma, Dieter Bruns, Peter Lipp, Gabriela Krasteva-Christ, Marcel A. Lauterbach","doi":"10.1002/smll.202411341","DOIUrl":null,"url":null,"abstract":"Microendoscopy, a crucial technology for minimally invasive investigations of organs, facilitates studies within confined cavities. However, conventional microendoscopy is often limited by probe size and the constraint of using a single excitation wavelength. In response to these constraints, a multichannel microendoscope with a slender profile of only 360 µm is engineered. Functional signals both in situ and in vivo are successfully captured from individual single cells, employing a specially developed software suite for image processing, and exhibiting an effective resolution of 4.6 µm, allowing for the resolution of subcellular neuronal structures. This system enabled the first examination of calcium dynamics in vivo in murine tracheal tuft cells (formerly named brush cells) and in situ in kidney podocytes. Additionally, it recorded ratiometric redox reactions in various biological settings, including intact explanted organs and pancreatic islet cultures. The flexibility and streamlined operation of the microendoscopic technique open new avenues for conducting in vivo research, allowing for studies of tissue and organ function at cellular resolution.","PeriodicalId":228,"journal":{"name":"Small","volume":"32 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202411341","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Microendoscopy, a crucial technology for minimally invasive investigations of organs, facilitates studies within confined cavities. However, conventional microendoscopy is often limited by probe size and the constraint of using a single excitation wavelength. In response to these constraints, a multichannel microendoscope with a slender profile of only 360 µm is engineered. Functional signals both in situ and in vivo are successfully captured from individual single cells, employing a specially developed software suite for image processing, and exhibiting an effective resolution of 4.6 µm, allowing for the resolution of subcellular neuronal structures. This system enabled the first examination of calcium dynamics in vivo in murine tracheal tuft cells (formerly named brush cells) and in situ in kidney podocytes. Additionally, it recorded ratiometric redox reactions in various biological settings, including intact explanted organs and pancreatic islet cultures. The flexibility and streamlined operation of the microendoscopic technique open new avenues for conducting in vivo research, allowing for studies of tissue and organ function at cellular resolution.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.