Xiaogeng Lin, Li Chen, Jiawang Zhuo, Rongxin Huang, Yiming Zeng, Yasan He
{"title":"Mechanistic Insights into the Formation of Nanofibrous Covalent Organic Frameworks (COFs) and their Promotion to the Catalysis of Hydrodechlorination","authors":"Xiaogeng Lin, Li Chen, Jiawang Zhuo, Rongxin Huang, Yiming Zeng, Yasan He","doi":"10.1002/smll.202501113","DOIUrl":null,"url":null,"abstract":"The nanoscale morphologies of COFs deeply affect their performance in practical applications. However, it still lacks studies to well understand their formation mechanism for guiding and controlling the synthesis for desired nanomorphology. To achieve more mechanistic insights into the formation of nanofibrous COFs, herein a series of nanofibrous and non-fibrous COFs are synthesized and the intrinsic relationships among the morphology, chemical constituent, structure planarity, and the DFT calculated interlayer stacking energy are investigated comprehensively. The study reveals the planarity of building monomers is not decisive for forming the nanofibrous COFs. The presence of electron-withdrawing triazine group in amine monomers and the electron-donating ─OH group in aldehyde monomers are essential for suppressing the growth of COF crystallites in <i>x-y</i> plane and promoting the stacking in <i>z</i>-direction to form nanofibrous COFs. The COF morphology can be modulated by the functional groups in monomers by regulating the competition between lateral reaction activity and interlayer stacking energy. The prepared nanofibrous COFs exhibited two-fold increased catalytic activity and better stability than the non-fibrous counterpart in hydrodechlorination. The new insights and proposed mechanism here can help open up a domain for precise designing and modulating the COF nanomorphology from molecular level for specific application.","PeriodicalId":228,"journal":{"name":"Small","volume":"58 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202501113","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The nanoscale morphologies of COFs deeply affect their performance in practical applications. However, it still lacks studies to well understand their formation mechanism for guiding and controlling the synthesis for desired nanomorphology. To achieve more mechanistic insights into the formation of nanofibrous COFs, herein a series of nanofibrous and non-fibrous COFs are synthesized and the intrinsic relationships among the morphology, chemical constituent, structure planarity, and the DFT calculated interlayer stacking energy are investigated comprehensively. The study reveals the planarity of building monomers is not decisive for forming the nanofibrous COFs. The presence of electron-withdrawing triazine group in amine monomers and the electron-donating ─OH group in aldehyde monomers are essential for suppressing the growth of COF crystallites in x-y plane and promoting the stacking in z-direction to form nanofibrous COFs. The COF morphology can be modulated by the functional groups in monomers by regulating the competition between lateral reaction activity and interlayer stacking energy. The prepared nanofibrous COFs exhibited two-fold increased catalytic activity and better stability than the non-fibrous counterpart in hydrodechlorination. The new insights and proposed mechanism here can help open up a domain for precise designing and modulating the COF nanomorphology from molecular level for specific application.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.