V activated electro-epoxidation catalyst in membrane electrode assembly system for the production of propylene oxide

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yan Lin, Hui Li, Xiaodong Miao, Yunayuan Sun, Hao Ren, Xifeng Yu, Wangyang Cui, Mingbo Wu, Zhongtao Li
{"title":"V activated electro-epoxidation catalyst in membrane electrode assembly system for the production of propylene oxide","authors":"Yan Lin, Hui Li, Xiaodong Miao, Yunayuan Sun, Hao Ren, Xifeng Yu, Wangyang Cui, Mingbo Wu, Zhongtao Li","doi":"10.1038/s41467-025-58486-y","DOIUrl":null,"url":null,"abstract":"<p>Direct electro-epoxidation of propylene (D-EOPO) with a membrane electrode assembly (MEA) system represents a sustainable approach for producing propylene oxide, which can reduce ohmic losses and simplify product separation. To address the challenges of selectivity and activity, we develop an Ag/V catalyst and integrate it into the “liquid-free” MEA reactor for continues D-EOPO. The V in the catalyst facilitates the formation of Ag-O active centers, thereby reducing the generation energy of *O radicals. Meanwhile, V doping also results in a downshift of the <i>d</i>-band center of the Ag sites. Consequently, the formation of the crucial intermediate (*OC<sub>3</sub>H<sub>6</sub>) is significantly accelerated through the coupling *O with adsorbed propylene, thereby markedly improving propylene oxide (PO) production. The MEA reactor, integrated with the developed Ag/V catalyst, can maintain a stable production rate of PO at 227 μmol/h over a period of 78 hours. Thus, the “liquid-free” electro-epoxidation protocol developed here exhibits greater industrial applicability.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"24 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58486-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Direct electro-epoxidation of propylene (D-EOPO) with a membrane electrode assembly (MEA) system represents a sustainable approach for producing propylene oxide, which can reduce ohmic losses and simplify product separation. To address the challenges of selectivity and activity, we develop an Ag/V catalyst and integrate it into the “liquid-free” MEA reactor for continues D-EOPO. The V in the catalyst facilitates the formation of Ag-O active centers, thereby reducing the generation energy of *O radicals. Meanwhile, V doping also results in a downshift of the d-band center of the Ag sites. Consequently, the formation of the crucial intermediate (*OC3H6) is significantly accelerated through the coupling *O with adsorbed propylene, thereby markedly improving propylene oxide (PO) production. The MEA reactor, integrated with the developed Ag/V catalyst, can maintain a stable production rate of PO at 227 μmol/h over a period of 78 hours. Thus, the “liquid-free” electro-epoxidation protocol developed here exhibits greater industrial applicability.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信