Shintaro Aoyagi, Etsuro Iwama, Keisuke Matsumura, Kazuaki Kisu, Keita Okazaki, Yoshihiko Egawa, McMahon Thomas Homer Reid, Wako Naoi, Patrick Rozier, Patrice Simon, Katsuhiko Naoi
{"title":"Ultra-Densified TiO₂(B) Anode With Fluid-Like Compressibility: Enhancing Volumetric Capacity for High-Performance Supercapacitors","authors":"Shintaro Aoyagi, Etsuro Iwama, Keisuke Matsumura, Kazuaki Kisu, Keita Okazaki, Yoshihiko Egawa, McMahon Thomas Homer Reid, Wako Naoi, Patrick Rozier, Patrice Simon, Katsuhiko Naoi","doi":"10.1002/smll.202410793","DOIUrl":null,"url":null,"abstract":"This study develops a highly densified bronze-type TiO₂ (TiO<sub>2</sub>(B)) anode to enhance the volumetric energy and power density of supercapacitors. By integrating ultracentrifugation with strategic carbon reduction via annealing, a TiO₂(B) anode with fluid-like lubrication, high compressibility, and improved electrode density is synthesized. The annealing process facilitated a hierarchical nanoporous TiO₂(B) network while preventing agglomeration, achieving an electrode density of 2.24 g cm⁻<sup>3</sup>, surpassing conventional values. The densified electrode exhibited an exceptional volumetric capacity of 400 mAh cm⁻<sup>3</sup>, maintaining high-rate performance at 120C. This approach effectively links mechanical and physicochemical properties to electrochemical performance, offering a scalable strategy for optimizing TiO₂(B) anodes. The findings highlight the potential of highly densified TiO₂(B) for hybrid supercapacitors, particularly in applications requiring maximum energy and power density within compact volumes. These advancements hold promise for electric mobility, portable electronics, and renewable energy storage, where efficiency and performance are critical. By demonstrating a method for achieving high-density energy storage, this study provides a framework for next-generation supercapacitor materials. Addressing the growing demands of modern technologies, this research advances high-performance, space-efficient energy storage solutions crucial for future energy applications","PeriodicalId":228,"journal":{"name":"Small","volume":"183 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202410793","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study develops a highly densified bronze-type TiO₂ (TiO2(B)) anode to enhance the volumetric energy and power density of supercapacitors. By integrating ultracentrifugation with strategic carbon reduction via annealing, a TiO₂(B) anode with fluid-like lubrication, high compressibility, and improved electrode density is synthesized. The annealing process facilitated a hierarchical nanoporous TiO₂(B) network while preventing agglomeration, achieving an electrode density of 2.24 g cm⁻3, surpassing conventional values. The densified electrode exhibited an exceptional volumetric capacity of 400 mAh cm⁻3, maintaining high-rate performance at 120C. This approach effectively links mechanical and physicochemical properties to electrochemical performance, offering a scalable strategy for optimizing TiO₂(B) anodes. The findings highlight the potential of highly densified TiO₂(B) for hybrid supercapacitors, particularly in applications requiring maximum energy and power density within compact volumes. These advancements hold promise for electric mobility, portable electronics, and renewable energy storage, where efficiency and performance are critical. By demonstrating a method for achieving high-density energy storage, this study provides a framework for next-generation supercapacitor materials. Addressing the growing demands of modern technologies, this research advances high-performance, space-efficient energy storage solutions crucial for future energy applications
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.