Thermal Stress Mitigation and Improved Performance in Perovskite Solar Cells via Lattice Matched Alkali Halide Passivation

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-04-01 DOI:10.1002/smll.202502659
Abhijit Singha, Ananta Paul, Nrita Gaur, Harmanjeet Singh Bilkhu, Anuraag Arya, Varun Bhalerao, Sudhanshu Mallick, K. R. Balasubramaniam, Dinesh Kabra
{"title":"Thermal Stress Mitigation and Improved Performance in Perovskite Solar Cells via Lattice Matched Alkali Halide Passivation","authors":"Abhijit Singha, Ananta Paul, Nrita Gaur, Harmanjeet Singh Bilkhu, Anuraag Arya, Varun Bhalerao, Sudhanshu Mallick, K. R. Balasubramaniam, Dinesh Kabra","doi":"10.1002/smll.202502659","DOIUrl":null,"url":null,"abstract":"This study utilizes a method to enhance the structural and thermal stability of perovskite solar cells (PSCs) by incorporating an alkali halide interlayer between the electron transport layer (ETL) and perovskite, which is known to improve device efficiency. This passivation technique significantly reduces residual stress within the perovskite at room temperature (3.68 MPa → 2.56 MPa) and maintains structural integrity under thermal cycling (−40 to 85 °C) as per IEC 61215: 2016 standards. Following 50 cycles, the treated film exhibits a minimal increase in residual stress (≈5.34 MPa), in contrast to the control film (≈29.72 MPa) based on Williamson-Hall 2θ – Sin<sup>2</sup>Ψ analysis. The incorporation of wide-bandgap alkali halides facilitates a strong lattice registry, thereby enhancing structural reliability. Moreover, fluorescence lifetime imaging microscopy (FLIM) confirms a reduction in defect formation, correlating with macroscopic lifetime studies. This also increases open circuit voltage (<i>V<sub>OC</sub></i>) (1.08 V → 1.15 V) and device efficiency (17.9% → 20.6%). Notably, the treated device retains ≈71% of its initial PCE after 50 thermal cycles, whereas control devices ceased operation after 30 cycles due to thermal stress-induced interfacial delamination. This approach effectively prevents interlayer delamination, improving long-term structural reliability and, thereby, enabling efficient and thermally stable PSC deployment.","PeriodicalId":228,"journal":{"name":"Small","volume":"50 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202502659","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study utilizes a method to enhance the structural and thermal stability of perovskite solar cells (PSCs) by incorporating an alkali halide interlayer between the electron transport layer (ETL) and perovskite, which is known to improve device efficiency. This passivation technique significantly reduces residual stress within the perovskite at room temperature (3.68 MPa → 2.56 MPa) and maintains structural integrity under thermal cycling (−40 to 85 °C) as per IEC 61215: 2016 standards. Following 50 cycles, the treated film exhibits a minimal increase in residual stress (≈5.34 MPa), in contrast to the control film (≈29.72 MPa) based on Williamson-Hall 2θ – Sin2Ψ analysis. The incorporation of wide-bandgap alkali halides facilitates a strong lattice registry, thereby enhancing structural reliability. Moreover, fluorescence lifetime imaging microscopy (FLIM) confirms a reduction in defect formation, correlating with macroscopic lifetime studies. This also increases open circuit voltage (VOC) (1.08 V → 1.15 V) and device efficiency (17.9% → 20.6%). Notably, the treated device retains ≈71% of its initial PCE after 50 thermal cycles, whereas control devices ceased operation after 30 cycles due to thermal stress-induced interfacial delamination. This approach effectively prevents interlayer delamination, improving long-term structural reliability and, thereby, enabling efficient and thermally stable PSC deployment.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信