Introducing an algorithm to accurately determine copolymer block-length distributions

IF 5.7 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Rick S. van den Hurk , Ynze Mengerink , Ron A.H. Peters , Arian C. van Asten , Bob W.J. Pirok , Tijmen S. Bos
{"title":"Introducing an algorithm to accurately determine copolymer block-length distributions","authors":"Rick S. van den Hurk ,&nbsp;Ynze Mengerink ,&nbsp;Ron A.H. Peters ,&nbsp;Arian C. van Asten ,&nbsp;Bob W.J. Pirok ,&nbsp;Tijmen S. Bos","doi":"10.1016/j.aca.2025.343990","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Copolymers are attractive for developing advanced materials with widespread applications such as medical devices, implants, or self-healing coatings for space stations and satellites. Their physical properties are tunable by controlling polymeric characteristics such as molecular weight and chemical composition. Another characteristic that has a significant influence on the material properties is the block-length distribution (BLD). Synthetic chemists can alter the BLD independently from molecular weight and chemical composition. However, analytically characterizing these BLDs, for copolymers composed out of multiple monomers, remains a huge challenge.</div></div><div><h3>Results</h3><div>In this study, an algorithm was developed that enables the accurate determination of copolymer BLDs. Copolymers were computationally simulated and fragmented by either a repeated-sampling approach or an analytical solution to obtain unbiased ground-truth data to objectively evaluate such algorithms. The performance of the novel analytical solution, coupled with an optimization algorithm, was assessed under various conditions. We have demonstrated that a trust-region-reflective algorithm yields highly accurate BLDs when fragment data up to the tetramer level is available. Although the presence of noise in the input data led to some noise in the output, it did not notably impact the overall performance of the algorithm.</div></div><div><h3>Significance</h3><div>The proposed algorithm demonstrated significant improvements over existing algorithms for the determination of copolymer BLDs. Using accurately simulated copolymer fragment data, which can be obtained through chemical reactions or physical processes, such algorithms could objectively be evaluated on their performance for the first time. These observations indicate that the proposed algorithm holds great potential for application to experimental copolymer fragment data.</div></div>","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"1354 ","pages":"Article 343990"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003267025003848","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Copolymers are attractive for developing advanced materials with widespread applications such as medical devices, implants, or self-healing coatings for space stations and satellites. Their physical properties are tunable by controlling polymeric characteristics such as molecular weight and chemical composition. Another characteristic that has a significant influence on the material properties is the block-length distribution (BLD). Synthetic chemists can alter the BLD independently from molecular weight and chemical composition. However, analytically characterizing these BLDs, for copolymers composed out of multiple monomers, remains a huge challenge.

Results

In this study, an algorithm was developed that enables the accurate determination of copolymer BLDs. Copolymers were computationally simulated and fragmented by either a repeated-sampling approach or an analytical solution to obtain unbiased ground-truth data to objectively evaluate such algorithms. The performance of the novel analytical solution, coupled with an optimization algorithm, was assessed under various conditions. We have demonstrated that a trust-region-reflective algorithm yields highly accurate BLDs when fragment data up to the tetramer level is available. Although the presence of noise in the input data led to some noise in the output, it did not notably impact the overall performance of the algorithm.

Significance

The proposed algorithm demonstrated significant improvements over existing algorithms for the determination of copolymer BLDs. Using accurately simulated copolymer fragment data, which can be obtained through chemical reactions or physical processes, such algorithms could objectively be evaluated on their performance for the first time. These observations indicate that the proposed algorithm holds great potential for application to experimental copolymer fragment data.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytica Chimica Acta
Analytica Chimica Acta 化学-分析化学
CiteScore
10.40
自引率
6.50%
发文量
1081
审稿时长
38 days
期刊介绍: Analytica Chimica Acta has an open access mirror journal Analytica Chimica Acta: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Analytica Chimica Acta provides a forum for the rapid publication of original research, and critical, comprehensive reviews dealing with all aspects of fundamental and applied modern analytical chemistry. The journal welcomes the submission of research papers which report studies concerning the development of new and significant analytical methodologies. In determining the suitability of submitted articles for publication, particular scrutiny will be placed on the degree of novelty and impact of the research and the extent to which it adds to the existing body of knowledge in analytical chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信