Hong-Da Zhang, Wei-Yao Yang, Miao Pang, Ya-Qiao Tian, Shi-Chao Su, Zhi-Ping Zhao, Le Sang
{"title":"Hydrophobic Ni foam catalyst for nitrobenzene hydrogenation enhancement in micropacked bed reactors","authors":"Hong-Da Zhang, Wei-Yao Yang, Miao Pang, Ya-Qiao Tian, Shi-Chao Su, Zhi-Ping Zhao, Le Sang","doi":"10.1002/aic.18846","DOIUrl":null,"url":null,"abstract":"Non-modified Pd/PDA/Ni foam, hydrophobic modified F<sub>9</sub>-Pd/PDA/Ni foam, and F<sub>17</sub>-Pd/PDA/Ni foam catalysts are successfully prepared and used for NB hydrogenation in micropacked bed reactors (μPBRs). The catalytic performance increases with the addition of water in the water–methanol mixed solvent. In the mixed solvent with 50 v/v% water, F<sub>17</sub>-Pd/PDA/Ni foam can almost completely convert nitrobenzene (NB) with a yield of 95.9% at a mild 45°C. As the solvent contact angle of catalysts increases (87.5–141.5°), the enhancement ratios of NB conversion and AN yield are 28.9%–92.4% and 31.4%–106.5%, respectively. The space–time yield of AN in μPBRs reaches 1.873 kg·L<sup>−1</sup>·h<sup>−1</sup>·g<sup>−1</sup>, which is 1–2 orders of magnitude higher than that of conventional reactors. The kinetic model of NB hydrogenation is established at the water–methanol system in μPBRs. The hydrophobicity of catalysts significantly improves the reaction rate of NB hydrogenation, and the reaction rate constant is increased by 69.9%.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"33 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18846","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Non-modified Pd/PDA/Ni foam, hydrophobic modified F9-Pd/PDA/Ni foam, and F17-Pd/PDA/Ni foam catalysts are successfully prepared and used for NB hydrogenation in micropacked bed reactors (μPBRs). The catalytic performance increases with the addition of water in the water–methanol mixed solvent. In the mixed solvent with 50 v/v% water, F17-Pd/PDA/Ni foam can almost completely convert nitrobenzene (NB) with a yield of 95.9% at a mild 45°C. As the solvent contact angle of catalysts increases (87.5–141.5°), the enhancement ratios of NB conversion and AN yield are 28.9%–92.4% and 31.4%–106.5%, respectively. The space–time yield of AN in μPBRs reaches 1.873 kg·L−1·h−1·g−1, which is 1–2 orders of magnitude higher than that of conventional reactors. The kinetic model of NB hydrogenation is established at the water–methanol system in μPBRs. The hydrophobicity of catalysts significantly improves the reaction rate of NB hydrogenation, and the reaction rate constant is increased by 69.9%.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.