Yuting Wu, Shikun Zhong, Bona Lu, Shanglin Liu, Youhao Xu, Wei Wang
{"title":"Reactive simulation of an industrial-scale FCC reaction-regeneration full loop system","authors":"Yuting Wu, Shikun Zhong, Bona Lu, Shanglin Liu, Youhao Xu, Wei Wang","doi":"10.1002/aic.18845","DOIUrl":null,"url":null,"abstract":"This study pioneers a three-dimensional, transient reactive simulation of an industrial fluid catalytic cracking full-loop system. Within a two-fluid model framework, the simulation incorporates the Energy Minimization Multiscale (EMMS)-based models to account for the effects of mesoscale flow structures on drag and heat transfer, and integrates a 12-lumped kinetics model and a coke combustion model to describe catalytic cracking reactions and catalyst regeneration, respectively. It finds the significant impact of reactions on solid concentration and gas velocity distributions throughout the system, particularly in the first reaction zone. The first reaction zone achieves 80% conversion of feedstock oil, with the second reaction zone contributing an additional 19% conversion. These variations in product concentration along the bed height reflect substantial differences in reaction types under varying environments. Furthermore, the simulation captures temperature changes along the solid circulation path, facilitating the determination of the heat exchanger power required to control the reaction temperature.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"13 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18845","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study pioneers a three-dimensional, transient reactive simulation of an industrial fluid catalytic cracking full-loop system. Within a two-fluid model framework, the simulation incorporates the Energy Minimization Multiscale (EMMS)-based models to account for the effects of mesoscale flow structures on drag and heat transfer, and integrates a 12-lumped kinetics model and a coke combustion model to describe catalytic cracking reactions and catalyst regeneration, respectively. It finds the significant impact of reactions on solid concentration and gas velocity distributions throughout the system, particularly in the first reaction zone. The first reaction zone achieves 80% conversion of feedstock oil, with the second reaction zone contributing an additional 19% conversion. These variations in product concentration along the bed height reflect substantial differences in reaction types under varying environments. Furthermore, the simulation captures temperature changes along the solid circulation path, facilitating the determination of the heat exchanger power required to control the reaction temperature.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.