Saisai Yan , Qing Liu , Zishu Wen , Bing Liang , Zhanjie Liu , Jiyao Xing , Jiyixuan Li , Miao Zhang , Xinlin Liu , Chao Wang , Dongming Xing
{"title":"An AIE-active Janus filter membrane for highly efficient detection and elimination of bioaerosols","authors":"Saisai Yan , Qing Liu , Zishu Wen , Bing Liang , Zhanjie Liu , Jiyao Xing , Jiyixuan Li , Miao Zhang , Xinlin Liu , Chao Wang , Dongming Xing","doi":"10.1016/j.jhazmat.2025.138116","DOIUrl":null,"url":null,"abstract":"<div><div>Highly efficient detection and sterilization techniques for bioaerosol prevention and control are urgently needed. Herein, we present an AIE-active Janus air filter membrane (AIE-HAFM) that features water-dissolvable micro-nano porous network architecture and aggregation-induced emission (AIE) activity constructed by the asymmetrical surface modification with an amphiphilic AIE photosensitizer (MeOTTVP). The all-round AIE-HAFM can not only provide low pressure drop and high interception efficiency for bioaerosol sampling but also perfectly inherit the AIE functions of MeOTTVP, which allows for intensive near-infrared (NIR) emission and efficient production of reactive oxygen species. The airborne pathogens can be effectively captured, collected, transferred, and released by AIE-HAFM for subsequent quantitative detection with colony counting and ATP bioluminescence, as well as stained by the incorporated MeOTTVP for NIR fluorescence imaging-guided visual detection. Meanwhile, AIE-HAFM enables on-demand and surface-dependent photodynamic effects for reliable bacterial eradication under white light irradiation due to the surface-concentrated MeOTTVP, consequently achieving the smart prevention and control of bioaerosols both in the simulated and real-world bioaerosol environment. The versatility of AIE-HAFM in handling diverse airborne pathogens may bring about a transformative solution to address the bioaerosol contamination problems.</div></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"492 ","pages":"Article 138116"},"PeriodicalIF":12.2000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389425010313","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Highly efficient detection and sterilization techniques for bioaerosol prevention and control are urgently needed. Herein, we present an AIE-active Janus air filter membrane (AIE-HAFM) that features water-dissolvable micro-nano porous network architecture and aggregation-induced emission (AIE) activity constructed by the asymmetrical surface modification with an amphiphilic AIE photosensitizer (MeOTTVP). The all-round AIE-HAFM can not only provide low pressure drop and high interception efficiency for bioaerosol sampling but also perfectly inherit the AIE functions of MeOTTVP, which allows for intensive near-infrared (NIR) emission and efficient production of reactive oxygen species. The airborne pathogens can be effectively captured, collected, transferred, and released by AIE-HAFM for subsequent quantitative detection with colony counting and ATP bioluminescence, as well as stained by the incorporated MeOTTVP for NIR fluorescence imaging-guided visual detection. Meanwhile, AIE-HAFM enables on-demand and surface-dependent photodynamic effects for reliable bacterial eradication under white light irradiation due to the surface-concentrated MeOTTVP, consequently achieving the smart prevention and control of bioaerosols both in the simulated and real-world bioaerosol environment. The versatility of AIE-HAFM in handling diverse airborne pathogens may bring about a transformative solution to address the bioaerosol contamination problems.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.