Isaac Shiri, Giovanni Baj, Pooya Mohammadi Kazaj, Marius R. Bigler, Anselm W. Stark, Waldo Valenzuela, Ryota Kakizaki, Matthias Siepe, Stephan Windecker, Lorenz Räber, Andreas A. Giannopoulos, George CM. Siontis, Ronny R. Buechel, Christoph Gräni
{"title":"AI-based detection and classification of anomalous aortic origin of coronary arteries using coronary CT angiography images","authors":"Isaac Shiri, Giovanni Baj, Pooya Mohammadi Kazaj, Marius R. Bigler, Anselm W. Stark, Waldo Valenzuela, Ryota Kakizaki, Matthias Siepe, Stephan Windecker, Lorenz Räber, Andreas A. Giannopoulos, George CM. Siontis, Ronny R. Buechel, Christoph Gräni","doi":"10.1038/s41467-025-58362-9","DOIUrl":null,"url":null,"abstract":"<p>Anomalous aortic origin of the coronary artery (AAOCA) is a rare cardiac condition that can lead to ischemia or sudden cardiac death, yet it is often overlooked or falsely classified in routine coronary CT angiography (CCTA). Here, we developed, validated, externally tested, and clinically evaluated a fully automated artificial intelligence (AI)-based tool for detecting and classifying AAOCA in 3D-CCTA images. The discriminatory performance of the different models achieved an AUC ≥ 0.99, with sensitivity and specificity ranging 0.95-0.99 across all internal and external testing datasets. Here, we present an AI-based model that enables fully automated and accurate detection and classification of AAOCA, with the potential for seamless integration into clinical workflows. The tool can deliver real-time alerts for potentially high-risk AAOCA anatomies, while also enabling the analysis of large 3D-CCTA cohorts. This will support a deeper understanding of the risks associated with this rare condition and contribute to improving its future management.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"33 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58362-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Anomalous aortic origin of the coronary artery (AAOCA) is a rare cardiac condition that can lead to ischemia or sudden cardiac death, yet it is often overlooked or falsely classified in routine coronary CT angiography (CCTA). Here, we developed, validated, externally tested, and clinically evaluated a fully automated artificial intelligence (AI)-based tool for detecting and classifying AAOCA in 3D-CCTA images. The discriminatory performance of the different models achieved an AUC ≥ 0.99, with sensitivity and specificity ranging 0.95-0.99 across all internal and external testing datasets. Here, we present an AI-based model that enables fully automated and accurate detection and classification of AAOCA, with the potential for seamless integration into clinical workflows. The tool can deliver real-time alerts for potentially high-risk AAOCA anatomies, while also enabling the analysis of large 3D-CCTA cohorts. This will support a deeper understanding of the risks associated with this rare condition and contribute to improving its future management.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.