Symmetry-Breaking Strategy Yields Dopant-Free Small Molecule Hole Transport Materials for Inorganic Perovskite Solar Cells with 20.58% Efficiency and Outstanding Stability

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Huimin Cai, Qiliang Zhu, Tianchen Pan, Lunbi Wu, Xin Gu, Chenghao Duan, Liangbin Xiong, Jiaying Wu, Sha Liu, Liyang Yu, Ruipeng Li, Keyou Yan, Ruijie Ma, Shengjian Liu, Tao Jia, Gang Li
{"title":"Symmetry-Breaking Strategy Yields Dopant-Free Small Molecule Hole Transport Materials for Inorganic Perovskite Solar Cells with 20.58% Efficiency and Outstanding Stability","authors":"Huimin Cai, Qiliang Zhu, Tianchen Pan, Lunbi Wu, Xin Gu, Chenghao Duan, Liangbin Xiong, Jiaying Wu, Sha Liu, Liyang Yu, Ruipeng Li, Keyou Yan, Ruijie Ma, Shengjian Liu, Tao Jia, Gang Li","doi":"10.1002/anie.202502478","DOIUrl":null,"url":null,"abstract":"Inorganic perovskites are known for their excellent photothermal stability; however, the photothermal stability of all-inorganic n-i-p perovskite solar cells (PSCs) is compromised due to ion diffusion and free radical-induced degradation caused by the use of doped Spiro-OMeTAD hole transport materials (HTMs). In this study, two isomeric D-A-D type small molecules, namely HBT and HiBT, were developed and used as dopant-free HTMs, using 2,1,3-benzothiadiazole or benzo[d][1,2,3]thiadiazole as acceptor moieties. The HiBT molecule, with its symmetry-breaking features, exhibits a large dipole moment, enhanced coordination-active sites, and a well-aligned energy level structure, all of which contribute to passivating perovskite surface defects and improving free charge separation. As a result, inorganic CsPbI3 PSCs with HiBT HTM achieved an impressive power conversion efficiency (PCE) of 20.58%, the highest reported for dopant-free HTM-based inorganic PSCs. Moreover, the enhanced hydrophobic properties of HiBT molecules, coupled with their ability to passivate perovskite surface defects, contribute to significantly improved device stability.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"16 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202502478","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Inorganic perovskites are known for their excellent photothermal stability; however, the photothermal stability of all-inorganic n-i-p perovskite solar cells (PSCs) is compromised due to ion diffusion and free radical-induced degradation caused by the use of doped Spiro-OMeTAD hole transport materials (HTMs). In this study, two isomeric D-A-D type small molecules, namely HBT and HiBT, were developed and used as dopant-free HTMs, using 2,1,3-benzothiadiazole or benzo[d][1,2,3]thiadiazole as acceptor moieties. The HiBT molecule, with its symmetry-breaking features, exhibits a large dipole moment, enhanced coordination-active sites, and a well-aligned energy level structure, all of which contribute to passivating perovskite surface defects and improving free charge separation. As a result, inorganic CsPbI3 PSCs with HiBT HTM achieved an impressive power conversion efficiency (PCE) of 20.58%, the highest reported for dopant-free HTM-based inorganic PSCs. Moreover, the enhanced hydrophobic properties of HiBT molecules, coupled with their ability to passivate perovskite surface defects, contribute to significantly improved device stability.
打破对称性策略为无机包晶太阳能电池提供无掺杂剂的小分子空穴传输材料,效率达 20.58% 并具有出色的稳定性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信