Aminomethyl Phosphonic Acid as Highly Effective Multifunctional Additive for Modification of Electron Transport Layer and Perovskite in Photovoltaic Solar Cells

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yujie Gao, Wenyu Gong, Zeqi Zhang, Jianing Guo, Jingyuan Ma, Xuan Li, Yanli Zeng, Mingxing Wu
{"title":"Aminomethyl Phosphonic Acid as Highly Effective Multifunctional Additive for Modification of Electron Transport Layer and Perovskite in Photovoltaic Solar Cells","authors":"Yujie Gao, Wenyu Gong, Zeqi Zhang, Jianing Guo, Jingyuan Ma, Xuan Li, Yanli Zeng, Mingxing Wu","doi":"10.1002/anie.202424479","DOIUrl":null,"url":null,"abstract":"The passivation of detrimental perovskite-based defects is critically acknowledged for fabricating highly effective perovskite solar cells (PSCs). The presence of a high-quality electron transport layer (ETL) is also considered a pivotal factor for effective charge extraction and transport dynamics. Herein, a simple small organic molecule, aminomethyl phosphonic acid (AMPA), is introduced as a multifunctional additive in the SnO2 ETL. The defects in the SnO2 ETL are effectively suppressed by passivating the oxygen vacancies upon the SnO2 surface. Simultaneously, the carrier mobility and crystallinity of SnO2 are enhanced, and the upward-regulated conduction band minimum (CBM) is beneficial for constructing a favourable energy level alignment with the perovskite layer. Notably, the introduced residuals on the SnO2 surface can function as crystalline seeds for growth of large perovskite grains, which can passivate the defects in the perovskite bulk phase, boundaries, as well as the SnO2/perovskite interface. Consequently, the power conversion efficiency (PCE) value of the AMPA-modified PSCs is enhanced from 19.91% to 24.22%. Most importantly, the unencapsulated PSCs with AMPA maintained 94.9% of the initial PCE during 720 h of storage at a relative humidity of 10%, attributed to the improved hydrophobicity of both the SnO2 and perovskite layers after AMPA modification.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"3 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202424479","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The passivation of detrimental perovskite-based defects is critically acknowledged for fabricating highly effective perovskite solar cells (PSCs). The presence of a high-quality electron transport layer (ETL) is also considered a pivotal factor for effective charge extraction and transport dynamics. Herein, a simple small organic molecule, aminomethyl phosphonic acid (AMPA), is introduced as a multifunctional additive in the SnO2 ETL. The defects in the SnO2 ETL are effectively suppressed by passivating the oxygen vacancies upon the SnO2 surface. Simultaneously, the carrier mobility and crystallinity of SnO2 are enhanced, and the upward-regulated conduction band minimum (CBM) is beneficial for constructing a favourable energy level alignment with the perovskite layer. Notably, the introduced residuals on the SnO2 surface can function as crystalline seeds for growth of large perovskite grains, which can passivate the defects in the perovskite bulk phase, boundaries, as well as the SnO2/perovskite interface. Consequently, the power conversion efficiency (PCE) value of the AMPA-modified PSCs is enhanced from 19.91% to 24.22%. Most importantly, the unencapsulated PSCs with AMPA maintained 94.9% of the initial PCE during 720 h of storage at a relative humidity of 10%, attributed to the improved hydrophobicity of both the SnO2 and perovskite layers after AMPA modification.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信