Effective role and mechanism of scrap iron filings in controlling hydrogen sulfide production in septic tanks

IF 12.2 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Zhiqiang Zhang , Shanshan Song , Wanze He , Xiaowei Ren , Yating Ren , Honglin Yuan , Heliang Pang , Jing Yang , Jinsuo Lu
{"title":"Effective role and mechanism of scrap iron filings in controlling hydrogen sulfide production in septic tanks","authors":"Zhiqiang Zhang ,&nbsp;Shanshan Song ,&nbsp;Wanze He ,&nbsp;Xiaowei Ren ,&nbsp;Yating Ren ,&nbsp;Honglin Yuan ,&nbsp;Heliang Pang ,&nbsp;Jing Yang ,&nbsp;Jinsuo Lu","doi":"10.1016/j.jhazmat.2025.138114","DOIUrl":null,"url":null,"abstract":"<div><div>Long-term anaerobic conditions in septic tanks exacerbate the release of hazardous gases, such as hydrogen sulfide (H<sub>2</sub>S), which degrades urban air quality. While traditional iron salt addition effectively inhibits H<sub>2</sub>S production, its large-scale application imposes economic burdens and challenges for low-carbon emission reduction. To address this issue, this study proposes the use of scrap iron filings (SIFs) as a source of Fe<sup>2+</sup> and Fe<sup>3+</sup> ions and evaluates their efficacy in sulfide control through a long-term laboratory-scale septic tank reactor. Experimental results demonstrated that the addition of SIFs reduced the average concentration of dissolved sulfides by 45.6 % and gaseous H<sub>2</sub>S by 92.6 %. Microbial community analysis of septic tank sediments revealed a significant decrease in sulfate-reducing bacteria (SRB) and an increase in sulfur-oxidizing bacteria (SOB), indicating that SIFs influence microbial activity by suppressing sulfide generation while enhancing sulfide oxidation. Furthermore, the addition of SIFs slightly increased the carbon-to-nitrogen (C/N) and carbon-to-phosphorus (C/P) ratios in the effluent, potentially improving subsequent nitrogen and phosphorus removal in wastewater treatment. These findings suggest a promising strategy for reducing hydrogen sulfide emissions and corrosion in septic tanks.</div></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"492 ","pages":"Article 138114"},"PeriodicalIF":12.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389425010295","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Long-term anaerobic conditions in septic tanks exacerbate the release of hazardous gases, such as hydrogen sulfide (H2S), which degrades urban air quality. While traditional iron salt addition effectively inhibits H2S production, its large-scale application imposes economic burdens and challenges for low-carbon emission reduction. To address this issue, this study proposes the use of scrap iron filings (SIFs) as a source of Fe2+ and Fe3+ ions and evaluates their efficacy in sulfide control through a long-term laboratory-scale septic tank reactor. Experimental results demonstrated that the addition of SIFs reduced the average concentration of dissolved sulfides by 45.6 % and gaseous H2S by 92.6 %. Microbial community analysis of septic tank sediments revealed a significant decrease in sulfate-reducing bacteria (SRB) and an increase in sulfur-oxidizing bacteria (SOB), indicating that SIFs influence microbial activity by suppressing sulfide generation while enhancing sulfide oxidation. Furthermore, the addition of SIFs slightly increased the carbon-to-nitrogen (C/N) and carbon-to-phosphorus (C/P) ratios in the effluent, potentially improving subsequent nitrogen and phosphorus removal in wastewater treatment. These findings suggest a promising strategy for reducing hydrogen sulfide emissions and corrosion in septic tanks.

Abstract Image

废铁屑在控制化粪池中硫化氢生成方面的有效作用和机制
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hazardous Materials
Journal of Hazardous Materials 工程技术-工程:环境
CiteScore
25.40
自引率
5.90%
发文量
3059
审稿时长
58 days
期刊介绍: The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信