{"title":"Cross-Platform Detection of Microplastics in Human Biological Tissues: Comparing Spectroscopic and Chromatographic Approaches","authors":"Lin Zhang, Jiaqi Tian, Xiaodan Zhu, Linlin Wang, Xiang Yun, Liyang Liang, Shuyin Duan","doi":"10.1016/j.jhazmat.2025.138133","DOIUrl":null,"url":null,"abstract":"Microplastic (MP) contamination in ecosystems underscores concerns about human bioaccumulation, yet analytical challenges persist due to complex biological matrices and polymer diversity. To systematically evaluate the efficacy of complementary analytical platforms, we conducted this study to systematically evaluate Raman microscopy and pyrolysis gas chromatography-mass spectrometry (py-GC/MS) for complementary MP detection in human biological samples. Building upon prior research frameworks, 48 paired endometrial and urine samples from parturient women were analyzed under rigorously controlled protocols to minimize exogenous contamination. Raman microscopy identified six polymer types, with polytetrafluoroethylene (PTFE) and polystyrene (PS) constituting primary components across both sample types. Particle size distributions spanned 1.23–6.98 μm, exhibiting comparable mean diameters in urine (2.85 ± 1.26 μm) and endometrial samples (2.89 ± 1.40 μm). Subsequent py-GC/MS analysis revealed previously undetected polymer co-occurrences (PS, PC, P, and PV) in samples initially classified as single-polymer PTFE or PS via Raman spectroscopy, thereby exposing inherent disparities in method-specific sensitivity and resolution. The follow-up multi-method comparison demonstrates that Raman microscopy excels in particle-specific morphological characterization, while py-GC/MS provides superior polymer quantification and composite identification. Our findings underscore the necessity of integrating orthogonal analytical approaches to overcome methodological limitations and achieve comprehensive MP profiling in complex biological systems.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"183 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.138133","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastic (MP) contamination in ecosystems underscores concerns about human bioaccumulation, yet analytical challenges persist due to complex biological matrices and polymer diversity. To systematically evaluate the efficacy of complementary analytical platforms, we conducted this study to systematically evaluate Raman microscopy and pyrolysis gas chromatography-mass spectrometry (py-GC/MS) for complementary MP detection in human biological samples. Building upon prior research frameworks, 48 paired endometrial and urine samples from parturient women were analyzed under rigorously controlled protocols to minimize exogenous contamination. Raman microscopy identified six polymer types, with polytetrafluoroethylene (PTFE) and polystyrene (PS) constituting primary components across both sample types. Particle size distributions spanned 1.23–6.98 μm, exhibiting comparable mean diameters in urine (2.85 ± 1.26 μm) and endometrial samples (2.89 ± 1.40 μm). Subsequent py-GC/MS analysis revealed previously undetected polymer co-occurrences (PS, PC, P, and PV) in samples initially classified as single-polymer PTFE or PS via Raman spectroscopy, thereby exposing inherent disparities in method-specific sensitivity and resolution. The follow-up multi-method comparison demonstrates that Raman microscopy excels in particle-specific morphological characterization, while py-GC/MS provides superior polymer quantification and composite identification. Our findings underscore the necessity of integrating orthogonal analytical approaches to overcome methodological limitations and achieve comprehensive MP profiling in complex biological systems.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.