Ultralong Afterglow of Zinc(II) Halide Complexes Enabled by Regulating the Arrangements of N-Methylbenzimidazole Ligands

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Guan-Huang Zhang, Hai-Ling Wang, Yun-Lan Li, Hua-Hong Zou, Fu-Pei Liang, Zhong-Hong Zhu
{"title":"Ultralong Afterglow of Zinc(II) Halide Complexes Enabled by Regulating the Arrangements of N-Methylbenzimidazole Ligands","authors":"Guan-Huang Zhang, Hai-Ling Wang, Yun-Lan Li, Hua-Hong Zou, Fu-Pei Liang, Zhong-Hong Zhu","doi":"10.1002/adfm.202425095","DOIUrl":null,"url":null,"abstract":"In this study, a simple and rapid strategy is developed for the gram-scale synthesis of zinc(II) halide complexes with ultralong afterglow under mild conditions. Crystalline, high-purity zinc(II) halide complexes are synthesized using <i>N</i>-methylbenzimidazole (<b>Bz</b>) and common zinc halide salts (ZnX<sub>2</sub>, X = Cl, Br, and I) as simple and cheap industrial raw materials by stirring at room temperature and atmospheric pressure. By exploiting the steric effect of terminal-coordinated halogen ions to regulate arrangements of the <b>Bz</b> ligands in the structure of zinc(II) halide complexes, namely <i>cis</i>-butterfly, <i>trans</i>-butterfly, and <i>cross</i>-arrangement, zinc(II) halide complexes with completely differentiated stacking modes are obtained. <b>Zn(Bz)Cl</b> with a <i>cis</i>-butterfly-shaped arrangement of the <b>Bz</b> ligands has the longest room-temperature phosphorescence (RTP) lifetime (505.01 ms at 298 K) and a long afterglow of up to 1.4 s. This study proposes for the first time the use of differentiated halogen end group coordination to regulate the arrangement of fluorophores within the structure of zinc(II) halide complexes, resulting in considerably improved RTP and long afterglow, thus providing a new platform for the large-scale synthesis of simple complexes with room-temperature ultralong afterglow.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"72 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202425095","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a simple and rapid strategy is developed for the gram-scale synthesis of zinc(II) halide complexes with ultralong afterglow under mild conditions. Crystalline, high-purity zinc(II) halide complexes are synthesized using N-methylbenzimidazole (Bz) and common zinc halide salts (ZnX2, X = Cl, Br, and I) as simple and cheap industrial raw materials by stirring at room temperature and atmospheric pressure. By exploiting the steric effect of terminal-coordinated halogen ions to regulate arrangements of the Bz ligands in the structure of zinc(II) halide complexes, namely cis-butterfly, trans-butterfly, and cross-arrangement, zinc(II) halide complexes with completely differentiated stacking modes are obtained. Zn(Bz)Cl with a cis-butterfly-shaped arrangement of the Bz ligands has the longest room-temperature phosphorescence (RTP) lifetime (505.01 ms at 298 K) and a long afterglow of up to 1.4 s. This study proposes for the first time the use of differentiated halogen end group coordination to regulate the arrangement of fluorophores within the structure of zinc(II) halide complexes, resulting in considerably improved RTP and long afterglow, thus providing a new platform for the large-scale synthesis of simple complexes with room-temperature ultralong afterglow.

Abstract Image

调节n -甲基苯并咪唑配体排列使卤化锌(II)配合物产生超余辉
在本研究中,我们开发了一种在温和条件下快速合成具有超余辉的克级卤化锌配合物的方法。以n -甲基苯并咪唑(Bz)和普通卤化锌盐(ZnX2, X = Cl, Br和I)为原料,在常温常压下搅拌,合成结晶性高纯卤化锌配合物。利用末端配位卤素离子的空间效应来调节Bz配体在锌(II)卤化物配合物结构中的排列,即顺式、反式和交叉排列,得到具有完全分化堆叠模式的锌(II)卤化物配合物。Bz配体呈顺式蝴蝶状排列的Zn(Bz)Cl具有最长的室温磷光(RTP)寿命(298 K时为505.01 ms)和长达1.4 s的余辉。本研究首次提出利用分化的卤素端基配位调节锌(II)卤化物配合物结构内荧光团的排列,从而显著改善RTP和长余辉,从而为大规模合成具有室温超长余辉的简单配合物提供了新的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信