{"title":"Micro- and nanoplastics differ in particle-mucus interactions: the sight on rheological properties, barrier dysfunction and microbiota dysbiosis","authors":"Xuemei Meng, Xue Zheng, Wenting Mai, Jianying Gao, Yanli Fan, Jing Fu, Junnan Xu","doi":"10.1016/j.jhazmat.2025.138130","DOIUrl":null,"url":null,"abstract":"Micro- and nanoplastics (MNPs) in food can cross the intestinal barrier and accumulate in multiple organs. Mucus serves as a vital defense against such invaders, but the nature of its interaction with MNPs remains unclear. In this study, we investigated changes in the rheological properties of mucus and the physicochemical properties of MNPs in co-incubation. The effects of MNPs on the mucus layer and gut microbiota were also assessed in vivo at environmentally relevant doses. MNPs adsorbed proteins in mucus, increasing apparent particle size, and reducing the surface charges. They broke the selective permeability of barrier and destroyed the histomorphology and microenvironment of microbiota in mice. Notably, nanoplastics were wrapped in mucus. They induced mucus secretion, crosstalk of microbiota, and reactive oxygen species (ROS) burst. Microplastics reduced the composite viscosity of mucus and thinned the mucus layer, facilitating diversification of harmful bacteria. Size plays a crucial role in particle-mucus interactions: nanoplastics tend to penetrate the mucus layer and disrupt microbial colonization, while microplastics contribute to mucus depletion. The physicochemical properties of MNPs and mucus characteristics affect microbial community, modulating the MNPs biotoxicity. These findings provide insights into mucus barrier homeostasis in health risk of MNPs.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"5 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.138130","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Micro- and nanoplastics (MNPs) in food can cross the intestinal barrier and accumulate in multiple organs. Mucus serves as a vital defense against such invaders, but the nature of its interaction with MNPs remains unclear. In this study, we investigated changes in the rheological properties of mucus and the physicochemical properties of MNPs in co-incubation. The effects of MNPs on the mucus layer and gut microbiota were also assessed in vivo at environmentally relevant doses. MNPs adsorbed proteins in mucus, increasing apparent particle size, and reducing the surface charges. They broke the selective permeability of barrier and destroyed the histomorphology and microenvironment of microbiota in mice. Notably, nanoplastics were wrapped in mucus. They induced mucus secretion, crosstalk of microbiota, and reactive oxygen species (ROS) burst. Microplastics reduced the composite viscosity of mucus and thinned the mucus layer, facilitating diversification of harmful bacteria. Size plays a crucial role in particle-mucus interactions: nanoplastics tend to penetrate the mucus layer and disrupt microbial colonization, while microplastics contribute to mucus depletion. The physicochemical properties of MNPs and mucus characteristics affect microbial community, modulating the MNPs biotoxicity. These findings provide insights into mucus barrier homeostasis in health risk of MNPs.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.