Iron and copper pillared clay photo-catalyzes carbon dioxide chemical reduction in aqueous medium

IF 13.3 1区 工程技术 Q1 ENGINEERING, CHEMICAL
L. Gerardo Cornejo-Cornejo, Rubi Romero, Aída Gutiérrez-Alejandre, Alejandro Regalado-Méndez, Deysi Amado, Jose A. Hernández-Servin, Reyna Natividad
{"title":"Iron and copper pillared clay photo-catalyzes carbon dioxide chemical reduction in aqueous medium","authors":"L. Gerardo Cornejo-Cornejo, Rubi Romero, Aída Gutiérrez-Alejandre, Alejandro Regalado-Méndez, Deysi Amado, Jose A. Hernández-Servin, Reyna Natividad","doi":"10.1016/j.cej.2025.162193","DOIUrl":null,"url":null,"abstract":"This work aimed to assess the catalytic activity of iron and copper pillared bentonite in the photoreduction of carbon dioxide towards organic compounds that are considered fuels, hydrogen carriers and brick molecules: methanol (M), formic acid (FA) and acetic acid (AA). The assessed variables were copper content, temperature, NaOH concentration and activation wavelength (254 nm and &gt; 400 nm). Fe and Cu content was quantified by atomic absorption: 13.62 % Fe (Fe-PILC), 2.51 % Cu (Cu/Fe-PILC-I), 3.86 % Cu (Cu/Fe-PILC-II). The addition of Fe and Cu increased specific surface area of bentonite, from 36 to 245, 137 and 98 m<sup>2</sup> g<sup>−1</sup> for Fe-PILC, Cu/Fe-PILC-I and Cu/Fe-PILC-II, respectively. FeO, Fe<sub>3</sub>O<sub>4</sub>, Fe<sub>2</sub>O<sub>3</sub>, CuO and Cu<sub>2</sub>O were identified by X-ray photoelectron spectroscopy, XRD and TEM. By UV–Vis diffuse reflectance spectroscopy the band-gap energy of the synthesized materials was found to be ca. 2 eV. Pillaring increased total surface acidity, with Lewis acid sites rising by up to 63 % for Fe-PILC, and 395 % for Cu/Fe-PILC-II materials, respectively, in comparison to Bentonite. The optimization of the CO<sub>2</sub> photo-reduction process was conducted by a Face Centered Central Composite Design (FCCD) and the optimal conditions maximizing FA (289.6 <span><span><math><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">μ</mi><mi is=\"true\" mathvariant=\"normal\">m</mi><mi is=\"true\" mathvariant=\"normal\">o</mi><mi is=\"true\" mathvariant=\"normal\">l</mi><mspace is=\"true\" width=\"0.166667em\"></mspace><msubsup is=\"true\"><mi is=\"true\" mathvariant=\"normal\">g</mi><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">C</mi><mi is=\"true\" mathvariant=\"normal\">A</mi><mi is=\"true\" mathvariant=\"normal\">T</mi></mrow><mrow is=\"true\"><mo is=\"true\">-</mo><mn is=\"true\">1</mn></mrow></msubsup></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">μ</mi><mi mathvariant=\"normal\" is=\"true\">m</mi><mi mathvariant=\"normal\" is=\"true\">o</mi><mi mathvariant=\"normal\" is=\"true\">l</mi><mspace width=\"0.166667em\" is=\"true\"></mspace><msubsup is=\"true\"><mi mathvariant=\"normal\" is=\"true\">g</mi><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">C</mi><mi mathvariant=\"normal\" is=\"true\">A</mi><mi mathvariant=\"normal\" is=\"true\">T</mi></mrow><mrow is=\"true\"><mo is=\"true\">-</mo><mn is=\"true\">1</mn></mrow></msubsup></mrow></math></script></span>) and AA (28.7 <span><span><math><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">μ</mi><mi is=\"true\" mathvariant=\"normal\">m</mi><mi is=\"true\" mathvariant=\"normal\">o</mi><mi is=\"true\" mathvariant=\"normal\">l</mi><mspace is=\"true\" width=\"0.166667em\"></mspace><msubsup is=\"true\"><mi is=\"true\" mathvariant=\"normal\">g</mi><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">C</mi><mi is=\"true\" mathvariant=\"normal\">A</mi><mi is=\"true\" mathvariant=\"normal\">T</mi></mrow><mrow is=\"true\"><mo is=\"true\">-</mo><mn is=\"true\">1</mn></mrow></msubsup></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">μ</mi><mi mathvariant=\"normal\" is=\"true\">m</mi><mi mathvariant=\"normal\" is=\"true\">o</mi><mi mathvariant=\"normal\" is=\"true\">l</mi><mspace width=\"0.166667em\" is=\"true\"></mspace><msubsup is=\"true\"><mi mathvariant=\"normal\" is=\"true\">g</mi><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">C</mi><mi mathvariant=\"normal\" is=\"true\">A</mi><mi mathvariant=\"normal\" is=\"true\">T</mi></mrow><mrow is=\"true\"><mo is=\"true\">-</mo><mn is=\"true\">1</mn></mrow></msubsup></mrow></math></script></span>) were: 20 °C, 0.25 M [NaOH]<sub>0</sub> and 3.86 % of Cu (C); Cu/Fe-PILC-II, under UV light. At this point, acrylic acid and methanol concentrations were 0.8 <span><span><math><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">μ</mi><mi is=\"true\" mathvariant=\"normal\">m</mi><mi is=\"true\" mathvariant=\"normal\">o</mi><mi is=\"true\" mathvariant=\"normal\">l</mi><mspace is=\"true\" width=\"0.166667em\"></mspace><msubsup is=\"true\"><mi is=\"true\" mathvariant=\"normal\">g</mi><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">C</mi><mi is=\"true\" mathvariant=\"normal\">A</mi><mi is=\"true\" mathvariant=\"normal\">T</mi></mrow><mrow is=\"true\"><mo is=\"true\">-</mo><mn is=\"true\">1</mn></mrow></msubsup></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">μ</mi><mi mathvariant=\"normal\" is=\"true\">m</mi><mi mathvariant=\"normal\" is=\"true\">o</mi><mi mathvariant=\"normal\" is=\"true\">l</mi><mspace width=\"0.166667em\" is=\"true\"></mspace><msubsup is=\"true\"><mi mathvariant=\"normal\" is=\"true\">g</mi><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">C</mi><mi mathvariant=\"normal\" is=\"true\">A</mi><mi mathvariant=\"normal\" is=\"true\">T</mi></mrow><mrow is=\"true\"><mo is=\"true\">-</mo><mn is=\"true\">1</mn></mrow></msubsup></mrow></math></script></span> and 3572.08 <span><span><math><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">μ</mi><mi is=\"true\" mathvariant=\"normal\">m</mi><mi is=\"true\" mathvariant=\"normal\">o</mi><mi is=\"true\" mathvariant=\"normal\">l</mi><mspace is=\"true\" width=\"0.166667em\"></mspace><msubsup is=\"true\"><mi is=\"true\" mathvariant=\"normal\">g</mi><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">C</mi><mi is=\"true\" mathvariant=\"normal\">A</mi><mi is=\"true\" mathvariant=\"normal\">T</mi></mrow><mrow is=\"true\"><mo is=\"true\">-</mo><mn is=\"true\">1</mn></mrow></msubsup></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">μ</mi><mi mathvariant=\"normal\" is=\"true\">m</mi><mi mathvariant=\"normal\" is=\"true\">o</mi><mi mathvariant=\"normal\" is=\"true\">l</mi><mspace width=\"0.166667em\" is=\"true\"></mspace><msubsup is=\"true\"><mi mathvariant=\"normal\" is=\"true\">g</mi><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">C</mi><mi mathvariant=\"normal\" is=\"true\">A</mi><mi mathvariant=\"normal\" is=\"true\">T</mi></mrow><mrow is=\"true\"><mo is=\"true\">-</mo><mn is=\"true\">1</mn></mrow></msubsup></mrow></math></script></span>, respectively. CO<sub>2</sub> photoreduction driven by Visible light was also tested, requiring moderate experimental conditions to accomplish a nearby value of carboxylic acids formation rate in comparison to the process assisted by UV light.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"30 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2025.162193","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work aimed to assess the catalytic activity of iron and copper pillared bentonite in the photoreduction of carbon dioxide towards organic compounds that are considered fuels, hydrogen carriers and brick molecules: methanol (M), formic acid (FA) and acetic acid (AA). The assessed variables were copper content, temperature, NaOH concentration and activation wavelength (254 nm and > 400 nm). Fe and Cu content was quantified by atomic absorption: 13.62 % Fe (Fe-PILC), 2.51 % Cu (Cu/Fe-PILC-I), 3.86 % Cu (Cu/Fe-PILC-II). The addition of Fe and Cu increased specific surface area of bentonite, from 36 to 245, 137 and 98 m2 g−1 for Fe-PILC, Cu/Fe-PILC-I and Cu/Fe-PILC-II, respectively. FeO, Fe3O4, Fe2O3, CuO and Cu2O were identified by X-ray photoelectron spectroscopy, XRD and TEM. By UV–Vis diffuse reflectance spectroscopy the band-gap energy of the synthesized materials was found to be ca. 2 eV. Pillaring increased total surface acidity, with Lewis acid sites rising by up to 63 % for Fe-PILC, and 395 % for Cu/Fe-PILC-II materials, respectively, in comparison to Bentonite. The optimization of the CO2 photo-reduction process was conducted by a Face Centered Central Composite Design (FCCD) and the optimal conditions maximizing FA (289.6 μmolgCAT-1) and AA (28.7 μmolgCAT-1) were: 20 °C, 0.25 M [NaOH]0 and 3.86 % of Cu (C); Cu/Fe-PILC-II, under UV light. At this point, acrylic acid and methanol concentrations were 0.8 μmolgCAT-1 and 3572.08 μmolgCAT-1, respectively. CO2 photoreduction driven by Visible light was also tested, requiring moderate experimental conditions to accomplish a nearby value of carboxylic acids formation rate in comparison to the process assisted by UV light.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Journal
Chemical Engineering Journal 工程技术-工程:化工
CiteScore
21.70
自引率
9.30%
发文量
6781
审稿时长
2.4 months
期刊介绍: The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信