Decoding the Three-Card Monte: Unraveling the Role of Solvation Shell, Surface Adsorption, and SEI Formation on Zn Anode Performance

IF 7.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Bhaskar Kakoty, Disha Brahma, Sreshtha Ganguly, Suraj Halder, Sheetal K. Jain, Sundaram Balasubramanian, Sridhar Rajaram, Premkumar Senguttuvan
{"title":"Decoding the Three-Card Monte: Unraveling the Role of Solvation Shell, Surface Adsorption, and SEI Formation on Zn Anode Performance","authors":"Bhaskar Kakoty, Disha Brahma, Sreshtha Ganguly, Suraj Halder, Sheetal K. Jain, Sundaram Balasubramanian, Sridhar Rajaram, Premkumar Senguttuvan","doi":"10.1021/acs.chemmater.5c00219","DOIUrl":null,"url":null,"abstract":"Additives or cosolvents are commonly used to curtail parasitic reactions in aqueous Zn-ion batteries. Usually, they are chosen based on the donor number, which indicates their affinity toward Zn<sup>2+</sup>. While their role in the modification of Zn-ion solvation shell, surface adsorption at the electrolyte/anode interface, and formation of solid–electrolyte interphase (SEI) are portrayed as a critical factors for enhancing Zn anode performance, deciphering the individual contributions is important to advance electrolyte engineering. In this work, we unveil the contrasting behaviors of two lactam cosolvents, caprolactam and 2-pyrrolidinone, in aqueous Zn-ion electrolytes. Although both electrolytes exhibit similar Zn-ion solvation structures and double-layer capacitances at the electrode/electrolyte interface, the caprolactam-based electrolyte outperforms its 2-pyrrolidinone counterpart. The Zn|Zn symmetric cell with a caprolactam-based electrolyte renders a cumulative capacity of ∼2600 mAh cm<sup>–2</sup>. Time-of-flight secondary-ion mass spectroscopy and <i>in-situ</i> FTIR measurements show the formation of a stable SEI through oligomerization of caprolactam. The importance of stable SEI formation as the key determinant in enhanced performance is further supported by crossover experiments. Overall, this study underscores the paramount importance of stable SEI formation over solvation and adsorption effects in enhancing the lifespan of Zn anodes.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"58 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.5c00219","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Additives or cosolvents are commonly used to curtail parasitic reactions in aqueous Zn-ion batteries. Usually, they are chosen based on the donor number, which indicates their affinity toward Zn2+. While their role in the modification of Zn-ion solvation shell, surface adsorption at the electrolyte/anode interface, and formation of solid–electrolyte interphase (SEI) are portrayed as a critical factors for enhancing Zn anode performance, deciphering the individual contributions is important to advance electrolyte engineering. In this work, we unveil the contrasting behaviors of two lactam cosolvents, caprolactam and 2-pyrrolidinone, in aqueous Zn-ion electrolytes. Although both electrolytes exhibit similar Zn-ion solvation structures and double-layer capacitances at the electrode/electrolyte interface, the caprolactam-based electrolyte outperforms its 2-pyrrolidinone counterpart. The Zn|Zn symmetric cell with a caprolactam-based electrolyte renders a cumulative capacity of ∼2600 mAh cm–2. Time-of-flight secondary-ion mass spectroscopy and in-situ FTIR measurements show the formation of a stable SEI through oligomerization of caprolactam. The importance of stable SEI formation as the key determinant in enhanced performance is further supported by crossover experiments. Overall, this study underscores the paramount importance of stable SEI formation over solvation and adsorption effects in enhancing the lifespan of Zn anodes.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemistry of Materials
Chemistry of Materials 工程技术-材料科学:综合
CiteScore
14.10
自引率
5.80%
发文量
929
审稿时长
1.5 months
期刊介绍: The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信