Endosomal chloride/proton exchangers need inhibitory TMEM9 β-subunits for regulation and prevention of disease-causing overactivity

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Rosa Planells-Cases, Viktoriia Vorobeva, Sumanta Kar, Franziska W. Schmitt, Uwe Schulte, Marina Schrecker, Richard K. Hite, Bernd Fakler, Thomas J. Jentsch
{"title":"Endosomal chloride/proton exchangers need inhibitory TMEM9 β-subunits for regulation and prevention of disease-causing overactivity","authors":"Rosa Planells-Cases, Viktoriia Vorobeva, Sumanta Kar, Franziska W. Schmitt, Uwe Schulte, Marina Schrecker, Richard K. Hite, Bernd Fakler, Thomas J. Jentsch","doi":"10.1038/s41467-025-58546-3","DOIUrl":null,"url":null,"abstract":"<p>The function of endosomes critically depends on their ion homeostasis. A crucial role of luminal Cl<sup>−</sup>, in addition to that of H<sup>+</sup>, is increasingly recognized. Both ions are transported by five distinct endolysosomal CLC chloride/proton exchangers. Dysfunction of each of these transporters entails severe disease. Here we identified TMEM9 and TMEM9B as obligatory β-subunits for endosomal ClC-3, ClC-4, and ClC-5. Mice lacking both β-subunits displayed severely reduced levels of all three CLCs and died embryonically or shortly after birth. TMEM9 proteins regulate trafficking of their partners. Surprisingly, they also strongly inhibit CLC ion transport. Tonic inhibition enables the regulation of CLCs and prevents toxic Cl<sup>−</sup> accumulation and swelling of endosomes. Inhibition requires a carboxy-terminal TMEM9 domain that interacts with CLCs at multiple sites. Disease-causing <i>CLCN</i> mutations that weaken inhibition by TMEM9 proteins cause a pathogenic gain of ion transport. Our work reveals the need to suppress, in a regulated manner, endolysosomal chloride/proton exchange. Several aspects of endosomal ion transport must be revised.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"183 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58546-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The function of endosomes critically depends on their ion homeostasis. A crucial role of luminal Cl, in addition to that of H+, is increasingly recognized. Both ions are transported by five distinct endolysosomal CLC chloride/proton exchangers. Dysfunction of each of these transporters entails severe disease. Here we identified TMEM9 and TMEM9B as obligatory β-subunits for endosomal ClC-3, ClC-4, and ClC-5. Mice lacking both β-subunits displayed severely reduced levels of all three CLCs and died embryonically or shortly after birth. TMEM9 proteins regulate trafficking of their partners. Surprisingly, they also strongly inhibit CLC ion transport. Tonic inhibition enables the regulation of CLCs and prevents toxic Cl accumulation and swelling of endosomes. Inhibition requires a carboxy-terminal TMEM9 domain that interacts with CLCs at multiple sites. Disease-causing CLCN mutations that weaken inhibition by TMEM9 proteins cause a pathogenic gain of ion transport. Our work reveals the need to suppress, in a regulated manner, endolysosomal chloride/proton exchange. Several aspects of endosomal ion transport must be revised.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信