{"title":"Second coordination sphere regulates nanozyme inhibition to assist early drug discovery","authors":"Yu Wu, Jian Li, Wenxuan Jiang, Weiqing Xu, Lirong Zheng, Canglong Wang, Wenling Gu, Chengzhou Zhu","doi":"10.1038/s41467-025-58291-7","DOIUrl":null,"url":null,"abstract":"<p>Early drug discovery is a time- and cost-consuming task requiring enzymes. Although nanozymes with metal sites akin to metallocofactors display similar activities, the lack of proximal amino acids hinders them from more adequately mimicking enzymes for drug discovery purposes. Hence, the rational design of the nanozyme second coordination sphere is desirable yet remains challenging. Herein, we report a nanozyme featuring atomically dispersed Cu-N<sub>4</sub> sites with proximal hydroxyl groups (CuNC-OH). Experimental and theoretical results reveal that Cu-N<sub>4</sub> site and hydroxyl respectively behave as cofactor and amino acid of the enzymatic pocket to interact with adsorbates, regulating nanozyme activity and inhibition. This mechanism involving dual sites is similar to that of thyroid peroxidases, which enables specific inhibition of CuNC-OH by antithyroid drugs. Based on these findings, a nanozyme-assisted drug discovery kit is established to analyze inhibition features of thyroid peroxidase inhibitors and screen out promising antithyroid drugs with a significant cost reduction compared with traditional enzyme kits.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"72 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58291-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Early drug discovery is a time- and cost-consuming task requiring enzymes. Although nanozymes with metal sites akin to metallocofactors display similar activities, the lack of proximal amino acids hinders them from more adequately mimicking enzymes for drug discovery purposes. Hence, the rational design of the nanozyme second coordination sphere is desirable yet remains challenging. Herein, we report a nanozyme featuring atomically dispersed Cu-N4 sites with proximal hydroxyl groups (CuNC-OH). Experimental and theoretical results reveal that Cu-N4 site and hydroxyl respectively behave as cofactor and amino acid of the enzymatic pocket to interact with adsorbates, regulating nanozyme activity and inhibition. This mechanism involving dual sites is similar to that of thyroid peroxidases, which enables specific inhibition of CuNC-OH by antithyroid drugs. Based on these findings, a nanozyme-assisted drug discovery kit is established to analyze inhibition features of thyroid peroxidase inhibitors and screen out promising antithyroid drugs with a significant cost reduction compared with traditional enzyme kits.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.