Developmental innovation of inferior ovaries and flower sex orchestrated by KNOX1 in cucurbits

IF 15.8 1区 生物学 Q1 PLANT SCIENCES
Zhaonian Dong, Xiaolin Liu, Xing Guo, Xun Liu, Bowen Wang, Wenwen Shao, Caihuan Tian, Yingying Zheng, Qiong Yu, Liyuan Zhong, Jinjing Sun, Shengkang Li, Tongxu Xin, Bohan Zhang, Tao Yang, Haorong Lu, Jocelyn K. C. Rose, William J. Lucas, Xun Xu, Sanwen Huang, Huan Liu, Xueyong Yang
{"title":"Developmental innovation of inferior ovaries and flower sex orchestrated by KNOX1 in cucurbits","authors":"Zhaonian Dong, Xiaolin Liu, Xing Guo, Xun Liu, Bowen Wang, Wenwen Shao, Caihuan Tian, Yingying Zheng, Qiong Yu, Liyuan Zhong, Jinjing Sun, Shengkang Li, Tongxu Xin, Bohan Zhang, Tao Yang, Haorong Lu, Jocelyn K. C. Rose, William J. Lucas, Xun Xu, Sanwen Huang, Huan Liu, Xueyong Yang","doi":"10.1038/s41477-025-01950-w","DOIUrl":null,"url":null,"abstract":"<p>In flowering plants, inferior ovaries are key morphological innovations that evolved multiple times from superior ovaries to protect female parts of the flower. However, the developmental mechanisms underlying inferior ovary formation remain largely unknown. Comparative spatial transcriptome mapping and cell lineage reconstructions in developing floral buds of cucumber and tomato, which have inferior and superior ovaries, respectively, revealed that inferior ovaries develop from accelerated receptacle growth resulting from the continuous activity of meristematic stems cells at the base of the cucumber floral organs. Genetic knockout of a receptacle-specific KNOX1 transcription factor in cucumber caused arrest in receptacle growth and yielded bisexual flowers with superior ovaries similar to those of tomato. Here we provide developmental and mechanistic insights into inferior ovary formation and sex determination in cucurbits.</p>","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"75 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41477-025-01950-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In flowering plants, inferior ovaries are key morphological innovations that evolved multiple times from superior ovaries to protect female parts of the flower. However, the developmental mechanisms underlying inferior ovary formation remain largely unknown. Comparative spatial transcriptome mapping and cell lineage reconstructions in developing floral buds of cucumber and tomato, which have inferior and superior ovaries, respectively, revealed that inferior ovaries develop from accelerated receptacle growth resulting from the continuous activity of meristematic stems cells at the base of the cucumber floral organs. Genetic knockout of a receptacle-specific KNOX1 transcription factor in cucumber caused arrest in receptacle growth and yielded bisexual flowers with superior ovaries similar to those of tomato. Here we provide developmental and mechanistic insights into inferior ovary formation and sex determination in cucurbits.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Plants
Nature Plants PLANT SCIENCES-
CiteScore
25.30
自引率
2.20%
发文量
196
期刊介绍: Nature Plants is an online-only, monthly journal publishing the best research on plants — from their evolution, development, metabolism and environmental interactions to their societal significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信