Actuation and Mapping of Surface Acoustic Wave Induced High-Frequency Wavefields on Suspended Graphene Membranes

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-04-01 DOI:10.1021/acsnano.4c18508
Hande N. Açıkgöz, Dong Hoon Shin, Inge C. van der Knijff, Allard J. Katan, Xiliang Yang, Peter G. Steeneken, Gerard J. Verbiest, Sabina Caneva
{"title":"Actuation and Mapping of Surface Acoustic Wave Induced High-Frequency Wavefields on Suspended Graphene Membranes","authors":"Hande N. Açıkgöz, Dong Hoon Shin, Inge C. van der Knijff, Allard J. Katan, Xiliang Yang, Peter G. Steeneken, Gerard J. Verbiest, Sabina Caneva","doi":"10.1021/acsnano.4c18508","DOIUrl":null,"url":null,"abstract":"High-frequency acoustic devices based on two-dimensional (2D) materials are emerging platforms to design and manipulate the spatiotemporal response of acoustic waves for next-generation sensing and contactless actuation applications. Conventional actuation methods, however, cannot be applied to all 2D materials, are frequency-limited or influenced by substrate interactions. Therefore, a universal, high-frequency, on-chip actuation technique is needed. Here, we demonstrate that surface acoustic waves (SAWs) can efficiently actuate suspended 2D materials by exciting suspended graphene membranes with high-frequency (375 MHz) Rayleigh waves and mapping the resulting vibration field with atomic force acoustic microscopy (AFAM), enabling direct visualization of wave propagation without substrate interference. Acoustic waves traveling from supported to suspended graphene experience a reduction in acoustic wavelength from 10 μm to ∼2 μm due to the decrease in effective bending rigidity, leading to a decrease in wave velocity on suspended graphene. By varying the excitation frequency through laser photothermal actuation (0–100 MHz) and SAW excitation (375 MHz), we observed a phase velocity change from ∼160 m/s to ∼700 m/s. This behavior is consistent with the nonlinear dispersion of acoustic waves, as predicted by plate theory, in suspended graphene membranes. The geometry and bending rigidity of the membrane thus play key roles in modulating the acoustic wave pattern and wavelength. This combined SAW actuation and AFAM visualization scheme advances the understanding of acoustic transport at the nanoscale limit and provides a route toward the manipulation of localized wavefields for on-chip patterning and transport over 2D materials surfaces.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"12 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c18508","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High-frequency acoustic devices based on two-dimensional (2D) materials are emerging platforms to design and manipulate the spatiotemporal response of acoustic waves for next-generation sensing and contactless actuation applications. Conventional actuation methods, however, cannot be applied to all 2D materials, are frequency-limited or influenced by substrate interactions. Therefore, a universal, high-frequency, on-chip actuation technique is needed. Here, we demonstrate that surface acoustic waves (SAWs) can efficiently actuate suspended 2D materials by exciting suspended graphene membranes with high-frequency (375 MHz) Rayleigh waves and mapping the resulting vibration field with atomic force acoustic microscopy (AFAM), enabling direct visualization of wave propagation without substrate interference. Acoustic waves traveling from supported to suspended graphene experience a reduction in acoustic wavelength from 10 μm to ∼2 μm due to the decrease in effective bending rigidity, leading to a decrease in wave velocity on suspended graphene. By varying the excitation frequency through laser photothermal actuation (0–100 MHz) and SAW excitation (375 MHz), we observed a phase velocity change from ∼160 m/s to ∼700 m/s. This behavior is consistent with the nonlinear dispersion of acoustic waves, as predicted by plate theory, in suspended graphene membranes. The geometry and bending rigidity of the membrane thus play key roles in modulating the acoustic wave pattern and wavelength. This combined SAW actuation and AFAM visualization scheme advances the understanding of acoustic transport at the nanoscale limit and provides a route toward the manipulation of localized wavefields for on-chip patterning and transport over 2D materials surfaces.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信