Mechanistic Insights into the Propagation Cycle of the Hofmann–Löffler–Freytag Reaction: Halogen vs Hydrogen Atom Transfer

IF 3.3 2区 化学 Q1 CHEMISTRY, ORGANIC
Gabrijel Zubčić, Luka Andrijanić, Iva Džeba, Jiangyang You, Tomislav Friganović, Tomislav Portada, Kristina Pavić, Erim Bešić, Valerije Vrček, Davor Šakić
{"title":"Mechanistic Insights into the Propagation Cycle of the Hofmann–Löffler–Freytag Reaction: Halogen vs Hydrogen Atom Transfer","authors":"Gabrijel Zubčić, Luka Andrijanić, Iva Džeba, Jiangyang You, Tomislav Friganović, Tomislav Portada, Kristina Pavić, Erim Bešić, Valerije Vrček, Davor Šakić","doi":"10.1021/acs.joc.4c02997","DOIUrl":null,"url":null,"abstract":"The Hofmann–Löffler–Freytag (HLF) reaction is a method that employs N-chlorinated precursors in radical-mediated rearrangement cycles to synthesize pyrrolidine rings and C–H functionalized products. This study aims to elucidate the mechanism of the propagation cycle, identify the rate-limiting step, and uncover the factors influencing the regioselectivity of the HLF reaction. Combining experimental techniques─laser flash photolysis (LFP), electron paramagnetic resonance (EPR), and nuclear magnetic resonance (NMR)─with computational density functional theory (DFT) calculations and kinetic modeling, we challenge the previous assumption that the hydrogen atom transfer (HAT) step was rate-limiting and regioselectivity was under both thermodynamic and kinetic control. We have identified that the halogen atom transfer (XAT) step in the propagation cycle of the HLF reaction follows pseudo-first-order kinetics and has the largest transition-state barrier. Additionally, we observed that regioselectivity is exclusively controlled by the intramolecular hydrogen atom transfer kinetics, while no thermodynamic preference exists in the formation of C<sub>6</sub>- and C<sub>5</sub>-chlorinated products. Our work predicts how to accelerate the HLF reaction and how we can control the regioselectivity by the smarter selection of substrates based on calculations, which could provide better control of the reaction when implemented in organic synthesis.","PeriodicalId":57,"journal":{"name":"Journal of Organic Chemistry","volume":"58 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.joc.4c02997","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

The Hofmann–Löffler–Freytag (HLF) reaction is a method that employs N-chlorinated precursors in radical-mediated rearrangement cycles to synthesize pyrrolidine rings and C–H functionalized products. This study aims to elucidate the mechanism of the propagation cycle, identify the rate-limiting step, and uncover the factors influencing the regioselectivity of the HLF reaction. Combining experimental techniques─laser flash photolysis (LFP), electron paramagnetic resonance (EPR), and nuclear magnetic resonance (NMR)─with computational density functional theory (DFT) calculations and kinetic modeling, we challenge the previous assumption that the hydrogen atom transfer (HAT) step was rate-limiting and regioselectivity was under both thermodynamic and kinetic control. We have identified that the halogen atom transfer (XAT) step in the propagation cycle of the HLF reaction follows pseudo-first-order kinetics and has the largest transition-state barrier. Additionally, we observed that regioselectivity is exclusively controlled by the intramolecular hydrogen atom transfer kinetics, while no thermodynamic preference exists in the formation of C6- and C5-chlorinated products. Our work predicts how to accelerate the HLF reaction and how we can control the regioselectivity by the smarter selection of substrates based on calculations, which could provide better control of the reaction when implemented in organic synthesis.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Organic Chemistry
Journal of Organic Chemistry 化学-有机化学
CiteScore
6.20
自引率
11.10%
发文量
1467
审稿时长
2 months
期刊介绍: Journal of Organic Chemistry welcomes original contributions of fundamental research in all branches of the theory and practice of organic chemistry. In selecting manuscripts for publication, the editors place emphasis on the quality and novelty of the work, as well as the breadth of interest to the organic chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信