Thousands-years-old deep-sea DNA viruses reveal the evolution of human pathogenic viruses

IF 11.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Tianliang He, Xinyi Zhang, Xiaobo Zhang
{"title":"Thousands-years-old deep-sea DNA viruses reveal the evolution of human pathogenic viruses","authors":"Tianliang He, Xinyi Zhang, Xiaobo Zhang","doi":"10.1016/j.jare.2025.03.057","DOIUrl":null,"url":null,"abstract":"<h3>Introduction</h3>In the last two decades, outbreaks of pathogenic viruses have led to significant human mortality and economic repercussions. Despite extensive investigations into tracing these viruses in terrestrial environments, their origins remain enigmatic.<h3>Objectives</h3>The Earth’s biosphere encompasses both sunlight-dependent terrestrial and surface ocean ecosystems, as well as the sunlight-independent deep-sea ecosystem. However, the traceability of human pathogenic viruses in the deep sea has not been thoroughly explored. This study aimed to investigate the presence of human pathogenic viruses in the deep sea.<h3>Methods</h3>In this study, we performed a viral metagenomic analysis using a global deep-sea sediment virome 2.0 dataset which contained 159 deep-sea sediment samples with geologic ages from 2,500 to 7,750 years.<h3>Results</h3>A total of 554,664 viral operational taxonomic units (vOTUs) were identified and further obtained 2,254 potential pathogenic viruses of vertebrates. Among them, 23 vOTUs exhibited high homology with 12 species of human pathogenic viruses which belonged to 4 viral families. Notably, variola virus, the first human pathogenic virus eradicated from humans and now only found in laboratories, was discovered in the ancient deep-sea sediments. The evolution analysis showed that these DNA viruses might represent the ancestors or variants of human pathogenic viruses, suggesting that the deep sea could be a crucial reservoir for human pathogenic viruses.<h3>Conclusion</h3>Our findings present all the ancient pathogenic DNA viruses of humans found in the deep sea for the first time, highlighting the source of the future epidemics. It is imperative to implement the stringent virus monitoring and management measures for human activities in marine environments to address the emerging challenges of marine biosecurity and promote sustainable use of oceans.","PeriodicalId":14952,"journal":{"name":"Journal of Advanced Research","volume":"34 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.jare.2025.03.057","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

In the last two decades, outbreaks of pathogenic viruses have led to significant human mortality and economic repercussions. Despite extensive investigations into tracing these viruses in terrestrial environments, their origins remain enigmatic.

Objectives

The Earth’s biosphere encompasses both sunlight-dependent terrestrial and surface ocean ecosystems, as well as the sunlight-independent deep-sea ecosystem. However, the traceability of human pathogenic viruses in the deep sea has not been thoroughly explored. This study aimed to investigate the presence of human pathogenic viruses in the deep sea.

Methods

In this study, we performed a viral metagenomic analysis using a global deep-sea sediment virome 2.0 dataset which contained 159 deep-sea sediment samples with geologic ages from 2,500 to 7,750 years.

Results

A total of 554,664 viral operational taxonomic units (vOTUs) were identified and further obtained 2,254 potential pathogenic viruses of vertebrates. Among them, 23 vOTUs exhibited high homology with 12 species of human pathogenic viruses which belonged to 4 viral families. Notably, variola virus, the first human pathogenic virus eradicated from humans and now only found in laboratories, was discovered in the ancient deep-sea sediments. The evolution analysis showed that these DNA viruses might represent the ancestors or variants of human pathogenic viruses, suggesting that the deep sea could be a crucial reservoir for human pathogenic viruses.

Conclusion

Our findings present all the ancient pathogenic DNA viruses of humans found in the deep sea for the first time, highlighting the source of the future epidemics. It is imperative to implement the stringent virus monitoring and management measures for human activities in marine environments to address the emerging challenges of marine biosecurity and promote sustainable use of oceans.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Advanced Research
Journal of Advanced Research Multidisciplinary-Multidisciplinary
CiteScore
21.60
自引率
0.90%
发文量
280
审稿时长
12 weeks
期刊介绍: Journal of Advanced Research (J. Adv. Res.) is an applied/natural sciences, peer-reviewed journal that focuses on interdisciplinary research. The journal aims to contribute to applied research and knowledge worldwide through the publication of original and high-quality research articles in the fields of Medicine, Pharmaceutical Sciences, Dentistry, Physical Therapy, Veterinary Medicine, and Basic and Biological Sciences. The following abstracting and indexing services cover the Journal of Advanced Research: PubMed/Medline, Essential Science Indicators, Web of Science, Scopus, PubMed Central, PubMed, Science Citation Index Expanded, Directory of Open Access Journals (DOAJ), and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信