Enhancing strength at elevated temperatures via dynamic high-density mobile dislocations in Mg alloys

IF 15.8 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING
Mingyu Fan, Ye Cui, Xin Zhou, Junming Chen, Yang Zhang, Lixin Sun, Jamieson Brechtl, Daqing Fang, Qian Li, Qingqing Ding, Hongbin Bei, Peter K. Liaw, Yanzhuo Xue, Xun-Li Wang, Yang Lu, Zhongwu Zhang
{"title":"Enhancing strength at elevated temperatures via dynamic high-density mobile dislocations in Mg alloys","authors":"Mingyu Fan, Ye Cui, Xin Zhou, Junming Chen, Yang Zhang, Lixin Sun, Jamieson Brechtl, Daqing Fang, Qian Li, Qingqing Ding, Hongbin Bei, Peter K. Liaw, Yanzhuo Xue, Xun-Li Wang, Yang Lu, Zhongwu Zhang","doi":"10.1016/j.jma.2025.03.004","DOIUrl":null,"url":null,"abstract":"Dislocation strengthening, as one of the methods to simultaneously enhance the room temperature strength and ductility of alloys, does not achieve the desired strengthening and plasticity effect during elevated-temperature deformation. Here, we report a novel strategy to boost the dislocation multiplication and accumulation during deformation at elevated temperatures through dynamic strain aging (DSA). With the introduction of the rare-earth element Ho in Mg-Y-Zn alloy, Ho atoms diffuse toward dislocations during deformation at elevated temperatures, provoking the DSA effect, which increases the dislocation density significantly via the interactions of mobile dislocations and Ho atoms. The resulting alloy achieves a great enhancement of dislocation hardening and obtains the dual benefits of high strength and good ductility simultaneously at high homologous temperatures. The present work provides an effective strategy to enhancing the strength and ductility for elevated-temperature materials.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"33 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2025.03.004","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Dislocation strengthening, as one of the methods to simultaneously enhance the room temperature strength and ductility of alloys, does not achieve the desired strengthening and plasticity effect during elevated-temperature deformation. Here, we report a novel strategy to boost the dislocation multiplication and accumulation during deformation at elevated temperatures through dynamic strain aging (DSA). With the introduction of the rare-earth element Ho in Mg-Y-Zn alloy, Ho atoms diffuse toward dislocations during deformation at elevated temperatures, provoking the DSA effect, which increases the dislocation density significantly via the interactions of mobile dislocations and Ho atoms. The resulting alloy achieves a great enhancement of dislocation hardening and obtains the dual benefits of high strength and good ductility simultaneously at high homologous temperatures. The present work provides an effective strategy to enhancing the strength and ductility for elevated-temperature materials.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Magnesium and Alloys
Journal of Magnesium and Alloys Engineering-Mechanics of Materials
CiteScore
20.20
自引率
14.80%
发文量
52
审稿时长
59 days
期刊介绍: The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信