Comparative tribological and drainage performance of additively manufactured outsoles tread designs

IF 6.3 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Shuo Xu, Shuvodeep De, Meysam Khaleghian, Anahita Emami
{"title":"Comparative tribological and drainage performance of additively manufactured outsoles tread designs","authors":"Shuo Xu, Shuvodeep De, Meysam Khaleghian, Anahita Emami","doi":"10.26599/frict.2025.9441024","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the effect of various tread designs to enhance grip on both dry and wet friction, aiming to reduce slip and fall accidents, especially in slip-prone workplaces and among the elderly. The research involves analyzing frictional performance and deformation characteristics through dry and wet friction testing. Computer-aided design (CAD) software was used to create digital models of various tread patterns, and two different additive manufacturing (AM) techniques, fused filament fabrication (FFF) and stereolithography (SLA) printing, were used for three-dimensional (3D) print block samples with tread patterns, and the materials used were thermoplastic rubber (TPR) filament and photocurable elastomeric resin. A specialized friction testing machine was used to measure the friction force of the treads on a glass surface under dry and wet conditions. A high-speed camera recorded the treads’ deformation and water drainage during testing. The results revealed the influence of tread pattern designs with two different rubber-like materials on friction and deformation, as well as performance on various contact surfaces.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"19 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26599/frict.2025.9441024","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the effect of various tread designs to enhance grip on both dry and wet friction, aiming to reduce slip and fall accidents, especially in slip-prone workplaces and among the elderly. The research involves analyzing frictional performance and deformation characteristics through dry and wet friction testing. Computer-aided design (CAD) software was used to create digital models of various tread patterns, and two different additive manufacturing (AM) techniques, fused filament fabrication (FFF) and stereolithography (SLA) printing, were used for three-dimensional (3D) print block samples with tread patterns, and the materials used were thermoplastic rubber (TPR) filament and photocurable elastomeric resin. A specialized friction testing machine was used to measure the friction force of the treads on a glass surface under dry and wet conditions. A high-speed camera recorded the treads’ deformation and water drainage during testing. The results revealed the influence of tread pattern designs with two different rubber-like materials on friction and deformation, as well as performance on various contact surfaces.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Friction
Friction Engineering-Mechanical Engineering
CiteScore
12.90
自引率
13.20%
发文量
324
审稿时长
13 weeks
期刊介绍: Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as: Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc. Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc. Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc. Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc. Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc. Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信