N, P, S co-doped carbon encapsulating silicon formed yolk-shell Si/C composite for high-performance lithium-ion batteries

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
An-Min Fei, Liang Wu, Mei-Tong Wei, Wen-Hua Shi, Zhi Qian, Zong-Bu Qin, Hemdan S.H. Mohamed, Zhi-Yi Hu, Jing Liu, Yu Li, Bao-Lian Su
{"title":"N, P, S co-doped carbon encapsulating silicon formed yolk-shell Si/C composite for high-performance lithium-ion batteries","authors":"An-Min Fei, Liang Wu, Mei-Tong Wei, Wen-Hua Shi, Zhi Qian, Zong-Bu Qin, Hemdan S.H. Mohamed, Zhi-Yi Hu, Jing Liu, Yu Li, Bao-Lian Su","doi":"10.1016/j.apsusc.2025.163141","DOIUrl":null,"url":null,"abstract":"The silicon (Si) anode boasts an exceptionally high theoretical capacity (4200 mAh g<sup>−1</sup>), making it an attractive candidate for advanced lithium-ion batteries (LIBs). However, its practical application is limited by poor electrical conductivity and disastrous volume expansion. In this work, we have successfully synthesized a yolk-shell composite material (Si@H-CoNPSC) consisting of N, P, S co-doped carbon encapsulated silicon nanoparticles (SiNPs) via a self-template method based on the Kirkendall effect. The Si@H-CoNPSC anode exhibits excellent electrochemical performance, after 300 cycles, keeping a specific capacity of 872.8 mAh g<sup>−1</sup> at 1 A g<sup>−1</sup>. Additionally, after 150 cycles, it retains 1305.8 mAh g<sup>−1</sup> at 0.5 A g<sup>−1</sup>, with a capacity retention of 91.1 %. These outstanding results are mainly due to the co-doped hollow carbon shell, which improves the anode’s conductivity and reduces volume changes during cycling. This study provides new insights for the designing of silicon-carbon anode structures for high-performance LIBs.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"55 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apsusc.2025.163141","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The silicon (Si) anode boasts an exceptionally high theoretical capacity (4200 mAh g−1), making it an attractive candidate for advanced lithium-ion batteries (LIBs). However, its practical application is limited by poor electrical conductivity and disastrous volume expansion. In this work, we have successfully synthesized a yolk-shell composite material (Si@H-CoNPSC) consisting of N, P, S co-doped carbon encapsulated silicon nanoparticles (SiNPs) via a self-template method based on the Kirkendall effect. The Si@H-CoNPSC anode exhibits excellent electrochemical performance, after 300 cycles, keeping a specific capacity of 872.8 mAh g−1 at 1 A g−1. Additionally, after 150 cycles, it retains 1305.8 mAh g−1 at 0.5 A g−1, with a capacity retention of 91.1 %. These outstanding results are mainly due to the co-doped hollow carbon shell, which improves the anode’s conductivity and reduces volume changes during cycling. This study provides new insights for the designing of silicon-carbon anode structures for high-performance LIBs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信