Self‐Optimized Reconstruction of Metal‐Organic Frameworks Introduces Cation Vacancies for Selective Electrosynthesis of Hydrogen Peroxide

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chao Miao, Shaohan Xu, Ziwen An, Xun Pan, Yanbo Li, Nan Hu, Lina Li, Yongxin Zhou, Guohua Zhao
{"title":"Self‐Optimized Reconstruction of Metal‐Organic Frameworks Introduces Cation Vacancies for Selective Electrosynthesis of Hydrogen Peroxide","authors":"Chao Miao, Shaohan Xu, Ziwen An, Xun Pan, Yanbo Li, Nan Hu, Lina Li, Yongxin Zhou, Guohua Zhao","doi":"10.1002/anie.202501930","DOIUrl":null,"url":null,"abstract":"The electrocatalytic synthesis of hydrogen peroxide (H2O2) through the two‐electron oxygen reduction pathway represents a green production process that has gained increasing importance. Nevertheless, there is a dearth of efficacious catalysts to attain high activity under industrial current density. In this study, we present a strategy for cation vacancy generation through metal‐organic frameworks self‐optimized reconfiguration for the efficient electrosynthesis of H2O2 under industrial current densities in solid‐electrolyte cell. The ZIF‐ZC91@Co(OH)2‐VCo electrocatalyst exhibits significant H2O2 selectivity of 97.8%, and the H2O2 productivity is up to 24.53 mol gcatalyst−1 h−1 with a direct and continuous output of ~3.36 wt% H2O2 aqueous solutions under industrial current density (400 mA cm−2). Impressively, the ZIF‐ZC91@Co(OH)2‐VCo possesses superb long‐term durability for over 220 h and can output H2O2 aqueous solution with a concentration of ~8.03 wt% in the pilot experiment. Theoretical calculations confirm that the introduction of modest cation vacancies optimizes the adsorption strength of *OOH intermediate and reduces both thermodynamic and kinetic barriers, thus balancing the selectivity of the two‐electron oxygen reduction. This work provides valuable insights into the rapid, eco‐friendly synthesis of H2O2 and the rational design of highly active catalysts.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"13 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202501930","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The electrocatalytic synthesis of hydrogen peroxide (H2O2) through the two‐electron oxygen reduction pathway represents a green production process that has gained increasing importance. Nevertheless, there is a dearth of efficacious catalysts to attain high activity under industrial current density. In this study, we present a strategy for cation vacancy generation through metal‐organic frameworks self‐optimized reconfiguration for the efficient electrosynthesis of H2O2 under industrial current densities in solid‐electrolyte cell. The ZIF‐ZC91@Co(OH)2‐VCo electrocatalyst exhibits significant H2O2 selectivity of 97.8%, and the H2O2 productivity is up to 24.53 mol gcatalyst−1 h−1 with a direct and continuous output of ~3.36 wt% H2O2 aqueous solutions under industrial current density (400 mA cm−2). Impressively, the ZIF‐ZC91@Co(OH)2‐VCo possesses superb long‐term durability for over 220 h and can output H2O2 aqueous solution with a concentration of ~8.03 wt% in the pilot experiment. Theoretical calculations confirm that the introduction of modest cation vacancies optimizes the adsorption strength of *OOH intermediate and reduces both thermodynamic and kinetic barriers, thus balancing the selectivity of the two‐electron oxygen reduction. This work provides valuable insights into the rapid, eco‐friendly synthesis of H2O2 and the rational design of highly active catalysts.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信