Severe cognitive decline in long-term care is related to gut microbiome production of metabolites involved in neurotransmission, immunomodulation, and autophagy

Andrew P Shoubridge, Lucy Carpenter, Erin Flynn, Lito E Papanicolas, Josephine Collins, David Gordon, David J Lynn, Craig Whitehead, Lex E X Leong, Monica Cations, David P De Souza, Vinod K Narayana, Jocelyn M Choo, Steve L Wesselingh, Maria Crotty, Maria C Inacio, Kerry Ivey, Steven L Taylor, Geraint B Rogers
{"title":"Severe cognitive decline in long-term care is related to gut microbiome production of metabolites involved in neurotransmission, immunomodulation, and autophagy","authors":"Andrew P Shoubridge, Lucy Carpenter, Erin Flynn, Lito E Papanicolas, Josephine Collins, David Gordon, David J Lynn, Craig Whitehead, Lex E X Leong, Monica Cations, David P De Souza, Vinod K Narayana, Jocelyn M Choo, Steve L Wesselingh, Maria Crotty, Maria C Inacio, Kerry Ivey, Steven L Taylor, Geraint B Rogers","doi":"10.1093/gerona/glaf053","DOIUrl":null,"url":null,"abstract":"Ageing-associated cognitive decline affects more than half of those in long-term residential aged care. Emerging evidence suggests that gut microbiome-host interactions influence the effects of modifiable risk factors. We investigated the relationship between gut microbiome characteristics and severity of cognitive impairment CI in 159 residents of long-term aged care. Severe CI was associated with a significantly increased abundance of proinflammatory bacterial species, including Methanobrevibacter smithii and Alistipes finegoldii, and decreased relative abundance of beneficial bacterial clades. Severe CI was associated with increased microbial capacity for methanogenesis, and reduced capacity for synthesis of short-chain fatty acids, neurotransmitters glutamate and gamma-aminobutyric acid, and amino acids required for neuro-protective lysosomal activity. These relationships were independent of age, sex, antibiotic exposure, and diet. Our findings implicate multiple gut microbiome-brain pathways in ageing-associated cognitive decline, including inflammation, neurotransmission, and autophagy, and highlight the potential to predict and prevent cognitive decline through microbiome-targeted strategies.","PeriodicalId":22892,"journal":{"name":"The Journals of Gerontology Series A: Biological Sciences and Medical Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journals of Gerontology Series A: Biological Sciences and Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gerona/glaf053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ageing-associated cognitive decline affects more than half of those in long-term residential aged care. Emerging evidence suggests that gut microbiome-host interactions influence the effects of modifiable risk factors. We investigated the relationship between gut microbiome characteristics and severity of cognitive impairment CI in 159 residents of long-term aged care. Severe CI was associated with a significantly increased abundance of proinflammatory bacterial species, including Methanobrevibacter smithii and Alistipes finegoldii, and decreased relative abundance of beneficial bacterial clades. Severe CI was associated with increased microbial capacity for methanogenesis, and reduced capacity for synthesis of short-chain fatty acids, neurotransmitters glutamate and gamma-aminobutyric acid, and amino acids required for neuro-protective lysosomal activity. These relationships were independent of age, sex, antibiotic exposure, and diet. Our findings implicate multiple gut microbiome-brain pathways in ageing-associated cognitive decline, including inflammation, neurotransmission, and autophagy, and highlight the potential to predict and prevent cognitive decline through microbiome-targeted strategies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信