Constructing Robust Electrode/Electrolyte Interphases for Highly Stable Lithium–Sulfurized Polyacrylonitrile Batteries

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Siyuan Shao, Jinze Hou, Youxuan Ni, Chunyan Zhu, Shuang Wu, Xinyi Liu, Can Wang, Kai Zhang, Zhenhua Yan, Yong Lu, Jun Chen
{"title":"Constructing Robust Electrode/Electrolyte Interphases for Highly Stable Lithium–Sulfurized Polyacrylonitrile Batteries","authors":"Siyuan Shao, Jinze Hou, Youxuan Ni, Chunyan Zhu, Shuang Wu, Xinyi Liu, Can Wang, Kai Zhang, Zhenhua Yan, Yong Lu, Jun Chen","doi":"10.1002/anie.202503214","DOIUrl":null,"url":null,"abstract":"Lithium–sulfurized polyacrylonitrile (SPAN) batteries show great promise for energy storage, but are plagued by poor cycling stability, which can be attributed to unfavorable electrode/electrolyte interphases for both anode and cathode. Here we design and achieve the anion‐moderate solvation structure based interconnected clusters in electrolyte by regulating the interactions of solvent with Li+ and diluent to construct robust anode/electrolyte and cathode/electrolyte interphases simultaneously for high‐performance Li–SPAN batteries. The optimal electrolyte endows Li plating/stripping with a high Coulombic efficiency of 99.47% at 1 mA cm–2 in Li||Cu cells. The Li–SPAN batteries show excellent cycling stability with a high capacity retention of 94.21% after 1215 cycles. Moreover, the assembled pouch‐type Li–SPAN battery under limited electrolyte condition (2.40 g Ah–1) achieves a capacity of 3.75 Ah, corresponding to a high energy density of 180 Wh kg–1 based on the total mass of the battery. This work provides a good electrolyte design principle to construct robust anode/electrolyte and cathode/electrolyte interphases for batteries.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"72 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202503214","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium–sulfurized polyacrylonitrile (SPAN) batteries show great promise for energy storage, but are plagued by poor cycling stability, which can be attributed to unfavorable electrode/electrolyte interphases for both anode and cathode. Here we design and achieve the anion‐moderate solvation structure based interconnected clusters in electrolyte by regulating the interactions of solvent with Li+ and diluent to construct robust anode/electrolyte and cathode/electrolyte interphases simultaneously for high‐performance Li–SPAN batteries. The optimal electrolyte endows Li plating/stripping with a high Coulombic efficiency of 99.47% at 1 mA cm–2 in Li||Cu cells. The Li–SPAN batteries show excellent cycling stability with a high capacity retention of 94.21% after 1215 cycles. Moreover, the assembled pouch‐type Li–SPAN battery under limited electrolyte condition (2.40 g Ah–1) achieves a capacity of 3.75 Ah, corresponding to a high energy density of 180 Wh kg–1 based on the total mass of the battery. This work provides a good electrolyte design principle to construct robust anode/electrolyte and cathode/electrolyte interphases for batteries.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信