A Potentialist Perspective on Intuitionistic Analysis

IF 0.8 1区 哲学 Q2 HISTORY & PHILOSOPHY OF SCIENCE
Ethan Brauer
{"title":"A Potentialist Perspective on Intuitionistic Analysis","authors":"Ethan Brauer","doi":"10.1093/philmat/nkae025","DOIUrl":null,"url":null,"abstract":"Free choice sequences play a key role in the Brouwerian continuum. Using recent modal analysis of potential infinity, we can make sense of free choice sequences as potentially infinite sequences of natural numbers without adopting Brouwer’s distinctive idealistic metaphysics. This provides classicists with a means to make sense of intuitionistic ideas from their own classical perspective. I develop a modal-potentialist theory of real numbers that suffices to capture the most distinctive features of intuitionistic analysis, such as Brouwer’s continuity theorem, the existence of a sequence that is monotone, bounded, and non-convergent, and the inability to decompose the continuum non-trivially.","PeriodicalId":49004,"journal":{"name":"Philosophia Mathematica","volume":"75 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophia Mathematica","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1093/philmat/nkae025","RegionNum":1,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Free choice sequences play a key role in the Brouwerian continuum. Using recent modal analysis of potential infinity, we can make sense of free choice sequences as potentially infinite sequences of natural numbers without adopting Brouwer’s distinctive idealistic metaphysics. This provides classicists with a means to make sense of intuitionistic ideas from their own classical perspective. I develop a modal-potentialist theory of real numbers that suffices to capture the most distinctive features of intuitionistic analysis, such as Brouwer’s continuity theorem, the existence of a sequence that is monotone, bounded, and non-convergent, and the inability to decompose the continuum non-trivially.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Philosophia Mathematica
Philosophia Mathematica HISTORY & PHILOSOPHY OF SCIENCE-
CiteScore
1.70
自引率
9.10%
发文量
26
审稿时长
>12 weeks
期刊介绍: Philosophia Mathematica is the only journal in the world devoted specifically to philosophy of mathematics. The journal publishes peer-reviewed new work in philosophy of mathematics, the application of mathematics, and computing. In addition to main articles, sometimes grouped on a single theme, there are shorter discussion notes, letters, and book reviews. The journal is published online-only, with three issues published per year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信