{"title":"Thermocoupled early dark energy","authors":"Marc Kamionkowski, Anubhav Mathur","doi":"10.1103/physrevd.111.063551","DOIUrl":null,"url":null,"abstract":"Early dark energy solutions to the Hubble tension introduce an additional scalar field which is frozen at early times but becomes dynamical around matter-radiation equality. In order to alleviate the tension, the scalar’s share of the total energy density must rapidly shrink from ∼</a:mo>10</a:mn>%</a:mo></a:mrow></a:math> at the onset of matter domination to <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mo>≪</c:mo><c:mn>1</c:mn><c:mo>%</c:mo></c:math> by recombination. This typically requires a steep potential that is imposed rather than emerging from a concrete particle physics model. Here, we point out an alternative possibility: a homogeneous scalar field coupled quadratically to a cosmological background of light thermal relics (such as the Standard Model neutrino) will acquire an effective potential which can reproduce the dynamics necessary to alleviate the tension. We identify the relevant parameter space for this “thermocoupled” scenario and study its unique phenomenology at the background level, including the back-reaction on the neutrino mass. Follow-up numerical work is necessary to determine the constraints placed on the model by early time measurements. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"36 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.063551","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Early dark energy solutions to the Hubble tension introduce an additional scalar field which is frozen at early times but becomes dynamical around matter-radiation equality. In order to alleviate the tension, the scalar’s share of the total energy density must rapidly shrink from ∼10% at the onset of matter domination to ≪1% by recombination. This typically requires a steep potential that is imposed rather than emerging from a concrete particle physics model. Here, we point out an alternative possibility: a homogeneous scalar field coupled quadratically to a cosmological background of light thermal relics (such as the Standard Model neutrino) will acquire an effective potential which can reproduce the dynamics necessary to alleviate the tension. We identify the relevant parameter space for this “thermocoupled” scenario and study its unique phenomenology at the background level, including the back-reaction on the neutrino mass. Follow-up numerical work is necessary to determine the constraints placed on the model by early time measurements. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.