{"title":"Four-Loop Anomalous Dimension of Flavor Nonsinglet Twist-Two Operator of General Lorentz Spin in QCD: ζ(3) Term","authors":"B. A. Kniehl, V. N. Velizhanin","doi":"10.1103/physrevlett.134.131901","DOIUrl":null,"url":null,"abstract":"We consider the anomalous dimension of the flavor nonsinglet twist-two quark operator of arbitrary Lorentz spin N</a:mi></a:math> at four loops in QCD and construct its contribution proportional to <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>ζ</c:mi><c:mo stretchy=\"false\">(</c:mo><c:mn>3</c:mn><c:mo stretchy=\"false\">)</c:mo></c:math> in analytic form by applying advanced methods of number theory on the available knowledge of low-<g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mi>N</g:mi></g:math> moments. In conjunction with similar results on the <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mi>ζ</i:mi><i:mo stretchy=\"false\">(</i:mo><i:mn>5</i:mn><i:mo stretchy=\"false\">)</i:mo></i:math> and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mi>ζ</m:mi><m:mo stretchy=\"false\">(</m:mo><m:mn>4</m:mn><m:mo stretchy=\"false\">)</m:mo></m:math> contributions, this completes our knowledge of the transcendental part of the considered anomalous dimension. This also provides important constraints on the as-yet elusive all-<q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:mi>N</q:mi></q:math> form of the rational part. Via Mellin transformation, we thus obtain the exact functional form in <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:mi>x</s:mi></s:math> of the respective piece of the nonsinglet Dokshitzer-Gribov-Lipatov-Altarelli-Parisi splitting function at four loops. This allows us to appreciably reduce the theoretical uncertainty in the approximation of that splitting function otherwise amenable from the first few low-<u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:mi>N</u:mi></u:math> moments. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"183 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.131901","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the anomalous dimension of the flavor nonsinglet twist-two quark operator of arbitrary Lorentz spin N at four loops in QCD and construct its contribution proportional to ζ(3) in analytic form by applying advanced methods of number theory on the available knowledge of low-N moments. In conjunction with similar results on the ζ(5) and ζ(4) contributions, this completes our knowledge of the transcendental part of the considered anomalous dimension. This also provides important constraints on the as-yet elusive all-N form of the rational part. Via Mellin transformation, we thus obtain the exact functional form in x of the respective piece of the nonsinglet Dokshitzer-Gribov-Lipatov-Altarelli-Parisi splitting function at four loops. This allows us to appreciably reduce the theoretical uncertainty in the approximation of that splitting function otherwise amenable from the first few low-N moments. Published by the American Physical Society2025
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks