Claudia Castillo-Moreno, Kazi Rafsanjani Amin, Ingrid Strandberg, Mikael Kervinen, Amr Osman, Simone Gasparinetti
{"title":"Dynamical Excitation Control and Multimode Emission of an Atom-Photon Bound State","authors":"Claudia Castillo-Moreno, Kazi Rafsanjani Amin, Ingrid Strandberg, Mikael Kervinen, Amr Osman, Simone Gasparinetti","doi":"10.1103/physrevlett.134.133601","DOIUrl":null,"url":null,"abstract":"Atom-photon bound states arise from the coupling of quantum emitters to the band edge of dispersion-engineered waveguides. Thanks to their tunable-range interactions, they are promising building blocks for quantum simulators. Here, we study the dynamics of an atom-photon bound state emerging from coupling a frequency-tunable quantum emitter—a transmon-type superconducting circuit—to the band edge of a microwave metamaterial. Employing precise temporal control over the frequency detuning of the emitter from the band edge, we examine the transition from adiabatic to nonadiabatic behavior in the formation of the bound state and its melting into the propagating modes of the metamaterial. Moreover, we experimentally observe multimode emission from the bound state, triggered by a fast change of the emitter’s frequency. Our Letter offers insight into the dynamic preparation of APBS and provides a method to characterize their photonic content, with implications in quantum optics and quantum simulation. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"280 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.133601","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Atom-photon bound states arise from the coupling of quantum emitters to the band edge of dispersion-engineered waveguides. Thanks to their tunable-range interactions, they are promising building blocks for quantum simulators. Here, we study the dynamics of an atom-photon bound state emerging from coupling a frequency-tunable quantum emitter—a transmon-type superconducting circuit—to the band edge of a microwave metamaterial. Employing precise temporal control over the frequency detuning of the emitter from the band edge, we examine the transition from adiabatic to nonadiabatic behavior in the formation of the bound state and its melting into the propagating modes of the metamaterial. Moreover, we experimentally observe multimode emission from the bound state, triggered by a fast change of the emitter’s frequency. Our Letter offers insight into the dynamic preparation of APBS and provides a method to characterize their photonic content, with implications in quantum optics and quantum simulation. Published by the American Physical Society2025
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks