Bojan Žunkovič, Pietro Torta, Giovanni Pecci, Guglielmo Lami, Mario Collura
{"title":"Variational Ground-State Quantum Adiabatic Theorem","authors":"Bojan Žunkovič, Pietro Torta, Giovanni Pecci, Guglielmo Lami, Mario Collura","doi":"10.1103/physrevlett.134.130601","DOIUrl":null,"url":null,"abstract":"We present a variational quantum adiabatic theorem, which states that, under certain assumptions, the adiabatic dynamics projected onto a variational manifold follow the instantaneous variational ground state. We focus on low-entanglement variational manifolds and target Hamiltonians with classical ground states. Despite highly entangled intermediate states along the exact adiabatic path, the variational evolution converges to the target ground state. We demonstrate this approach with several examples that align with our theoretical analysis. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"223 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.130601","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We present a variational quantum adiabatic theorem, which states that, under certain assumptions, the adiabatic dynamics projected onto a variational manifold follow the instantaneous variational ground state. We focus on low-entanglement variational manifolds and target Hamiltonians with classical ground states. Despite highly entangled intermediate states along the exact adiabatic path, the variational evolution converges to the target ground state. We demonstrate this approach with several examples that align with our theoretical analysis. Published by the American Physical Society2025
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks