Chiral Superfluid Helium-3 in the Quasi-Two-Dimensional Limit

IF 8.1 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Petri J. Heikkinen, Lev V. Levitin, Xavier Rojas, Angadjit Singh, Nathan Eng, Andrew Casey, John Saunders, Anton Vorontsov, Nikolay Zhelev, Abhilash Thanniyil Sebastian, Jeevak M. Parpia
{"title":"Chiral Superfluid Helium-3 in the Quasi-Two-Dimensional Limit","authors":"Petri J. Heikkinen, Lev V. Levitin, Xavier Rojas, Angadjit Singh, Nathan Eng, Andrew Casey, John Saunders, Anton Vorontsov, Nikolay Zhelev, Abhilash Thanniyil Sebastian, Jeevak M. Parpia","doi":"10.1103/physrevlett.134.136001","DOIUrl":null,"url":null,"abstract":"Anisotropic pair breaking close to surfaces favors the chiral A</a:mi></a:math> phase of the superfluid <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:mmultiscripts><c:mrow><c:mi>He</c:mi></c:mrow><c:mprescripts/><c:none/><c:mrow><c:mn>3</c:mn></c:mrow></c:mmultiscripts></c:mrow></c:math> over the time-reversal invariant <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>B</e:mi></e:math> phase. Confining the superfluid <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mrow><g:mmultiscripts><g:mrow><g:mi>He</g:mi></g:mrow><g:mprescripts/><g:none/><g:mrow><g:mn>3</g:mn></g:mrow></g:mmultiscripts></g:mrow></g:math> into a cavity of height <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mi>D</i:mi></i:math> of the order of the Cooper pair size characterized by the coherence length <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:msub><k:mi>ξ</k:mi><k:mn>0</k:mn></k:msub></k:math>—ranging between 16 nm (34 bar) and 77 nm (0 bar)—extends the surface effects over the whole sample volume, thus allowing stabilization of the <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mi>A</m:mi></m:math> phase at pressures <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:mi>P</o:mi></o:math> and temperatures <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:mi>T</q:mi></q:math> where otherwise the <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:mi>B</s:mi></s:math> phase would be stable. In this Letter, the surfaces of such a confined sample are covered with a superfluid <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:mrow><u:mmultiscripts><u:mrow><u:mi>He</u:mi></u:mrow><u:mprescripts/><u:none/><u:mrow><u:mn>4</u:mn></u:mrow></u:mmultiscripts></u:mrow></u:math> film to create specular quasiparticle scattering boundary conditions, preventing the suppression of the superfluid order parameter. We show that the chiral <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><w:mi>A</w:mi></w:math> phase is the stable superfluid phase under strong confinement over the full <y:math xmlns:y=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><y:mrow><y:mi>P</y:mi><y:mtext>−</y:mtext><y:mi>T</y:mi></y:mrow></y:math> phase diagram down to a quasi-two-dimensional limit D</ab:mi>/</ab:mo>ξ</ab:mi>0</ab:mn></ab:msub>=</ab:mo>1</ab:mn></ab:math>, where <cb:math xmlns:cb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><cb:mi>D</cb:mi><cb:mo>=</cb:mo><cb:mn>80</cb:mn><cb:mtext> </cb:mtext><cb:mtext> </cb:mtext><cb:mi>nm</cb:mi></cb:math>. The planar phase, which is degenerate with the chiral <eb:math xmlns:eb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><eb:mi>A</eb:mi></eb:math> phase in the weak-coupling limit, is not observed. The gap inferred from measurements over the wide pressure range from 0.2 to 21.0 bar leads to an empirical ansatz for temperature-dependent strong-coupling effects. We discuss how these results pave the way for the realization of the fully gapped two-dimensional <gb:math xmlns:gb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><gb:msub><gb:mi>p</gb:mi><gb:mi>x</gb:mi></gb:msub><gb:mo>+</gb:mo><gb:mi>i</gb:mi><gb:msub><gb:mi>p</gb:mi><gb:mi>y</gb:mi></gb:msub></gb:math> superfluid under more extreme confinement. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"33 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.136001","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Anisotropic pair breaking close to surfaces favors the chiral A phase of the superfluid He3 over the time-reversal invariant B phase. Confining the superfluid He3 into a cavity of height D of the order of the Cooper pair size characterized by the coherence length ξ0—ranging between 16 nm (34 bar) and 77 nm (0 bar)—extends the surface effects over the whole sample volume, thus allowing stabilization of the A phase at pressures P and temperatures T where otherwise the B phase would be stable. In this Letter, the surfaces of such a confined sample are covered with a superfluid He4 film to create specular quasiparticle scattering boundary conditions, preventing the suppression of the superfluid order parameter. We show that the chiral A phase is the stable superfluid phase under strong confinement over the full PT phase diagram down to a quasi-two-dimensional limit D/ξ0=1, where D=80 nm. The planar phase, which is degenerate with the chiral A phase in the weak-coupling limit, is not observed. The gap inferred from measurements over the wide pressure range from 0.2 to 21.0 bar leads to an empirical ansatz for temperature-dependent strong-coupling effects. We discuss how these results pave the way for the realization of the fully gapped two-dimensional px+ipy superfluid under more extreme confinement. Published by the American Physical Society 2025
准二维极限中的手性超流体氦-3
接近表面的各向异性对断裂有利于超流体He3的手性A相而不是时间反转不变的B相。将超流体He3限制在一个高度D为库珀对大小的空腔中,其相干长度在16 nm (34 bar)和77 nm (0 bar)之间,从而扩展了整个样品体积的表面效应,从而允许在压力P和温度T下稳定a相,否则B相将是稳定的。在这篇论文中,在这样一个受限样品的表面覆盖一层超流体He4膜,以产生镜面准粒子散射边界条件,防止超流体有序参数的抑制。我们证明了手性A相是强约束下的稳定超流体相,在整个P - T相图上,直到准二维极限D/ξ0=1,其中D=80 nm。没有观察到在弱耦合极限下与手性A相简并的平面相。从0.2至21.0 bar的宽压力范围内的测量推断出的差距导致了温度依赖性强耦合效应的经验分析。我们讨论了这些结果如何为在更极端约束下实现全间隙二维px+ipy超流体铺平道路。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信