Petri J. Heikkinen, Lev V. Levitin, Xavier Rojas, Angadjit Singh, Nathan Eng, Andrew Casey, John Saunders, Anton Vorontsov, Nikolay Zhelev, Abhilash Thanniyil Sebastian, Jeevak M. Parpia
{"title":"Chiral Superfluid Helium-3 in the Quasi-Two-Dimensional Limit","authors":"Petri J. Heikkinen, Lev V. Levitin, Xavier Rojas, Angadjit Singh, Nathan Eng, Andrew Casey, John Saunders, Anton Vorontsov, Nikolay Zhelev, Abhilash Thanniyil Sebastian, Jeevak M. Parpia","doi":"10.1103/physrevlett.134.136001","DOIUrl":null,"url":null,"abstract":"Anisotropic pair breaking close to surfaces favors the chiral A</a:mi></a:math> phase of the superfluid <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:mmultiscripts><c:mrow><c:mi>He</c:mi></c:mrow><c:mprescripts/><c:none/><c:mrow><c:mn>3</c:mn></c:mrow></c:mmultiscripts></c:mrow></c:math> over the time-reversal invariant <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>B</e:mi></e:math> phase. Confining the superfluid <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mrow><g:mmultiscripts><g:mrow><g:mi>He</g:mi></g:mrow><g:mprescripts/><g:none/><g:mrow><g:mn>3</g:mn></g:mrow></g:mmultiscripts></g:mrow></g:math> into a cavity of height <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mi>D</i:mi></i:math> of the order of the Cooper pair size characterized by the coherence length <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:msub><k:mi>ξ</k:mi><k:mn>0</k:mn></k:msub></k:math>—ranging between 16 nm (34 bar) and 77 nm (0 bar)—extends the surface effects over the whole sample volume, thus allowing stabilization of the <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mi>A</m:mi></m:math> phase at pressures <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:mi>P</o:mi></o:math> and temperatures <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:mi>T</q:mi></q:math> where otherwise the <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:mi>B</s:mi></s:math> phase would be stable. In this Letter, the surfaces of such a confined sample are covered with a superfluid <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:mrow><u:mmultiscripts><u:mrow><u:mi>He</u:mi></u:mrow><u:mprescripts/><u:none/><u:mrow><u:mn>4</u:mn></u:mrow></u:mmultiscripts></u:mrow></u:math> film to create specular quasiparticle scattering boundary conditions, preventing the suppression of the superfluid order parameter. We show that the chiral <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><w:mi>A</w:mi></w:math> phase is the stable superfluid phase under strong confinement over the full <y:math xmlns:y=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><y:mrow><y:mi>P</y:mi><y:mtext>−</y:mtext><y:mi>T</y:mi></y:mrow></y:math> phase diagram down to a quasi-two-dimensional limit D</ab:mi>/</ab:mo>ξ</ab:mi>0</ab:mn></ab:msub>=</ab:mo>1</ab:mn></ab:math>, where <cb:math xmlns:cb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><cb:mi>D</cb:mi><cb:mo>=</cb:mo><cb:mn>80</cb:mn><cb:mtext> </cb:mtext><cb:mtext> </cb:mtext><cb:mi>nm</cb:mi></cb:math>. The planar phase, which is degenerate with the chiral <eb:math xmlns:eb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><eb:mi>A</eb:mi></eb:math> phase in the weak-coupling limit, is not observed. The gap inferred from measurements over the wide pressure range from 0.2 to 21.0 bar leads to an empirical ansatz for temperature-dependent strong-coupling effects. We discuss how these results pave the way for the realization of the fully gapped two-dimensional <gb:math xmlns:gb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><gb:msub><gb:mi>p</gb:mi><gb:mi>x</gb:mi></gb:msub><gb:mo>+</gb:mo><gb:mi>i</gb:mi><gb:msub><gb:mi>p</gb:mi><gb:mi>y</gb:mi></gb:msub></gb:math> superfluid under more extreme confinement. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"33 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.136001","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Anisotropic pair breaking close to surfaces favors the chiral A phase of the superfluid He3 over the time-reversal invariant B phase. Confining the superfluid He3 into a cavity of height D of the order of the Cooper pair size characterized by the coherence length ξ0—ranging between 16 nm (34 bar) and 77 nm (0 bar)—extends the surface effects over the whole sample volume, thus allowing stabilization of the A phase at pressures P and temperatures T where otherwise the B phase would be stable. In this Letter, the surfaces of such a confined sample are covered with a superfluid He4 film to create specular quasiparticle scattering boundary conditions, preventing the suppression of the superfluid order parameter. We show that the chiral A phase is the stable superfluid phase under strong confinement over the full P−T phase diagram down to a quasi-two-dimensional limit D/ξ0=1, where D=80nm. The planar phase, which is degenerate with the chiral A phase in the weak-coupling limit, is not observed. The gap inferred from measurements over the wide pressure range from 0.2 to 21.0 bar leads to an empirical ansatz for temperature-dependent strong-coupling effects. We discuss how these results pave the way for the realization of the fully gapped two-dimensional px+ipy superfluid under more extreme confinement. Published by the American Physical Society2025
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks