Mechanisms of experience-dependent place-cell referencing in hippocampal area CA1

IF 21.2 1区 医学 Q1 NEUROSCIENCES
Fish Kunxun Qian, Yiding Li, Jeffrey C. Magee
{"title":"Mechanisms of experience-dependent place-cell referencing in hippocampal area CA1","authors":"Fish Kunxun Qian, Yiding Li, Jeffrey C. Magee","doi":"10.1038/s41593-025-01930-5","DOIUrl":null,"url":null,"abstract":"<p>Hippocampal CA1 place cells (PCs) encode both space- and goal-referenced information to support a cognitive map. The mechanism of this referencing and the role of experience remain poorly understood. Here we longitudinally recorded PC activity while head-fixed mice performed a spatial learning task on a treadmill. In a familiar environment, the CA1 representation consisted of PCs that were referenced to either specific spatial locations or a reward goal in approximately equal proportions; however, the CA1 representation became predominately goal-referenced upon exposure to a novel environment, as space-referenced PCs adaptively switched reference frames. Intracellular membrane potential recordings revealed that individual CA1 neurons simultaneously received both space- and goal-referenced synaptic inputs, and the ratio of these inputs was correlated with individual PC referencing. Furthermore, behavioral timescale synaptic plasticity shaped PC referencing. Together, these results suggest that experience-dependent adjustment of synaptic input shapes PC referencing to support a flexible cognitive map.</p>","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"16 1","pages":""},"PeriodicalIF":21.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41593-025-01930-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Hippocampal CA1 place cells (PCs) encode both space- and goal-referenced information to support a cognitive map. The mechanism of this referencing and the role of experience remain poorly understood. Here we longitudinally recorded PC activity while head-fixed mice performed a spatial learning task on a treadmill. In a familiar environment, the CA1 representation consisted of PCs that were referenced to either specific spatial locations or a reward goal in approximately equal proportions; however, the CA1 representation became predominately goal-referenced upon exposure to a novel environment, as space-referenced PCs adaptively switched reference frames. Intracellular membrane potential recordings revealed that individual CA1 neurons simultaneously received both space- and goal-referenced synaptic inputs, and the ratio of these inputs was correlated with individual PC referencing. Furthermore, behavioral timescale synaptic plasticity shaped PC referencing. Together, these results suggest that experience-dependent adjustment of synaptic input shapes PC referencing to support a flexible cognitive map.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature neuroscience
Nature neuroscience 医学-神经科学
CiteScore
38.60
自引率
1.20%
发文量
212
审稿时长
1 months
期刊介绍: Nature Neuroscience, a multidisciplinary journal, publishes papers of the utmost quality and significance across all realms of neuroscience. The editors welcome contributions spanning molecular, cellular, systems, and cognitive neuroscience, along with psychophysics, computational modeling, and nervous system disorders. While no area is off-limits, studies offering fundamental insights into nervous system function receive priority. The journal offers high visibility to both readers and authors, fostering interdisciplinary communication and accessibility to a broad audience. It maintains high standards of copy editing and production, rigorous peer review, rapid publication, and operates independently from academic societies and other vested interests. In addition to primary research, Nature Neuroscience features news and views, reviews, editorials, commentaries, perspectives, book reviews, and correspondence, aiming to serve as the voice of the global neuroscience community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信