Ensembles of center vortices and chains: Insights from a natural lattice framework

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy
David R. Junior, Luis E. Oxman
{"title":"Ensembles of center vortices and chains: Insights from a natural lattice framework","authors":"David R. Junior, Luis E. Oxman","doi":"10.1103/physrevd.111.054036","DOIUrl":null,"url":null,"abstract":"A scenario to understand the asymptotic properties of confinement between quark probes, based on a 4D mixed ensemble of percolating center-vortex world surfaces and chains, was initially proposed by one of us in a non-Abelian setting. More recently, the same physics was reobtained by means of a Schrödinger wave functional peaked at Abelian-projected configurations, which deals with center-vortex lines and pointlike monopoles in real space. In this work, we formulate the Abelian-projected ensemble and reassess the non-Abelian one within the Weingarten lattice representation for the sum over surfaces. In the phase where world surfaces are stabilized by contact interactions and percolate, lattice gauge fields emerge. This generalizes the Goldstone modes in an Abelian loop condensate to the case where non-Abelian degrees of freedom are present. In this language, the different natural matching properties of elementary center-vortex world surfaces and monopole worldlines can be easily characterized. In the lattice, the Abelian setting also implements the original idea that the mixed ensemble reconciles N</a:mi></a:mrow></a:math>-ality with the formation of a confining flux tube. In this picture, center vortices and chains explain why Abelian-projected variables capture this property at asymptotic distances while simultaneously allowing for a “dual superconductor” description of the fundamental string. Common features, differences in the continuum, and perspectives will also be addressed. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"1 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.054036","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

A scenario to understand the asymptotic properties of confinement between quark probes, based on a 4D mixed ensemble of percolating center-vortex world surfaces and chains, was initially proposed by one of us in a non-Abelian setting. More recently, the same physics was reobtained by means of a Schrödinger wave functional peaked at Abelian-projected configurations, which deals with center-vortex lines and pointlike monopoles in real space. In this work, we formulate the Abelian-projected ensemble and reassess the non-Abelian one within the Weingarten lattice representation for the sum over surfaces. In the phase where world surfaces are stabilized by contact interactions and percolate, lattice gauge fields emerge. This generalizes the Goldstone modes in an Abelian loop condensate to the case where non-Abelian degrees of freedom are present. In this language, the different natural matching properties of elementary center-vortex world surfaces and monopole worldlines can be easily characterized. In the lattice, the Abelian setting also implements the original idea that the mixed ensemble reconciles N-ality with the formation of a confining flux tube. In this picture, center vortices and chains explain why Abelian-projected variables capture this property at asymptotic distances while simultaneously allowing for a “dual superconductor” description of the fundamental string. Common features, differences in the continuum, and perspectives will also be addressed. Published by the American Physical Society 2025
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信