China’s carbon sinks from land-use change underestimated

IF 29.6 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Yakun Zhu, Xiaosheng Xia, Josep G. Canadell, Shilong Piao, Xinqing Lu, Umakant Mishra, Xuhui Wang, Wenping Yuan, Zhangcai Qin
{"title":"China’s carbon sinks from land-use change underestimated","authors":"Yakun Zhu, Xiaosheng Xia, Josep G. Canadell, Shilong Piao, Xinqing Lu, Umakant Mishra, Xuhui Wang, Wenping Yuan, Zhangcai Qin","doi":"10.1038/s41558-025-02296-z","DOIUrl":null,"url":null,"abstract":"The size and attribution of the regional net carbon flux from land-use change (LUC) activities (ELUC) are often highly debated, especially in regions such as China, which has experienced decades-long extensive reforestation activities. Here, using a LUC dataset incorporating remote-sensing and national forest inventory data with two modelling approaches, we show that ELUC in China shifted from a carbon source to a sink in the 1990s, contributing to a net cumulative CO2 removal of 2.0 Pg C during 1981–2020. From 2001 to 2020, the average ELUC was −0.14 Pg C yr−1, accounting for over one-third of the national land carbon sinks. Forest-related LUC activities contributed greatly to national carbon fluxes, while non-forest-related activities played a dominant role in certain areas. Our findings suggest that the carbon sinks from LUC activities in China may be largely underestimated in global assessments, underscoring the need to develop region-specific modelling for evaluation and potential regulation. The terrestrial carbon flux—sources and sinks—under land-use change (LUC) is difficult to quantify. Here, using a LUC dataset drawing on remote sensing and forest inventory data, the authors show that in China the carbon sink from LUC (such as afforestation) may be underestimated.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"15 4","pages":"428-435"},"PeriodicalIF":29.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Climate Change","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41558-025-02296-z","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The size and attribution of the regional net carbon flux from land-use change (LUC) activities (ELUC) are often highly debated, especially in regions such as China, which has experienced decades-long extensive reforestation activities. Here, using a LUC dataset incorporating remote-sensing and national forest inventory data with two modelling approaches, we show that ELUC in China shifted from a carbon source to a sink in the 1990s, contributing to a net cumulative CO2 removal of 2.0 Pg C during 1981–2020. From 2001 to 2020, the average ELUC was −0.14 Pg C yr−1, accounting for over one-third of the national land carbon sinks. Forest-related LUC activities contributed greatly to national carbon fluxes, while non-forest-related activities played a dominant role in certain areas. Our findings suggest that the carbon sinks from LUC activities in China may be largely underestimated in global assessments, underscoring the need to develop region-specific modelling for evaluation and potential regulation. The terrestrial carbon flux—sources and sinks—under land-use change (LUC) is difficult to quantify. Here, using a LUC dataset drawing on remote sensing and forest inventory data, the authors show that in China the carbon sink from LUC (such as afforestation) may be underestimated.

Abstract Image

Abstract Image

中国土地利用变化的碳汇被低估
土地利用变化(LUC)活动引起的区域净碳通量的大小和归属经常引起激烈的争论,特别是在中国等经历了长达数十年的广泛再造林活动的地区。本文利用遥感数据和国家森林清查数据,结合两种建模方法,分析了20世纪90年代中国ELUC从碳源向碳汇的转变,并在1981-2020年间贡献了2.0 Pg C的净累积CO2去除。2001 - 2020年,ELUC平均为- 0.14 Pg C /年,占全国陆地碳汇的三分之一以上。与森林有关的土地利用与土地利用变化活动对国家碳通量贡献很大,而与森林无关的活动在某些地区发挥主导作用。我们的研究结果表明,在全球评估中,中国土地利用/土地覆盖活动的碳汇可能被大大低估,这强调了开发针对特定区域的评估模型和潜在监管的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Climate Change
Nature Climate Change ENVIRONMENTAL SCIENCES-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
40.30
自引率
1.60%
发文量
267
审稿时长
4-8 weeks
期刊介绍: Nature Climate Change is dedicated to addressing the scientific challenge of understanding Earth's changing climate and its societal implications. As a monthly journal, it publishes significant and cutting-edge research on the nature, causes, and impacts of global climate change, as well as its implications for the economy, policy, and the world at large. The journal publishes original research spanning the natural and social sciences, synthesizing interdisciplinary research to provide a comprehensive understanding of climate change. It upholds the high standards set by all Nature-branded journals, ensuring top-tier original research through a fair and rigorous review process, broad readership access, high standards of copy editing and production, rapid publication, and independence from academic societies and other vested interests. Nature Climate Change serves as a platform for discussion among experts, publishing opinion, analysis, and review articles. It also features Research Highlights to highlight important developments in the field and original reporting from renowned science journalists in the form of feature articles. Topics covered in the journal include adaptation, atmospheric science, ecology, economics, energy, impacts and vulnerability, mitigation, oceanography, policy, sociology, and sustainability, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信