Xiaoting Hou, Chang Ren, Jing Jin, Yu Chen, Xinyu Lyu, Kangle Bi, Noah D. Carrillo, Vincent L. Cryns, Richard A. Anderson, Jichao Sun, Mo Chen
{"title":"Phosphoinositide signalling in cell motility and adhesion","authors":"Xiaoting Hou, Chang Ren, Jing Jin, Yu Chen, Xinyu Lyu, Kangle Bi, Noah D. Carrillo, Vincent L. Cryns, Richard A. Anderson, Jichao Sun, Mo Chen","doi":"10.1038/s41556-025-01647-4","DOIUrl":null,"url":null,"abstract":"<p>Cell motility and adhesion are fundamental components for diverse physiological functions, including embryonic development, immune responses and tissue repair. Dysregulation of these processes can lead to a range of diseases, including cancer. Cell motility and adhesion are complex and often require regulation by an intricate network of signalling pathways, with phosphatidylinositol phosphates (PIPs) having a central role. PIPs are derived from phosphatidylinositol phosphorylation and are instrumental in mediating membrane dynamics, intracellular trafficking, cytoskeletal organization and signal transduction, all of which are crucial for cellular responses to environmental stimuli. Here we discuss the mechanisms through which PIPs modulate cell motility and adhesion by examining their roles at focal adhesions, within the cytoskeleton, at protein scaffolds and in the nucleus. By providing a comprehensive overview of PIP signalling, this Review underscores their significance in maintaining cellular homeostasis and highlights their potential as therapeutic targets in diseases characterized by aberrant cell motility and adhesion.</p>","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"43 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41556-025-01647-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cell motility and adhesion are fundamental components for diverse physiological functions, including embryonic development, immune responses and tissue repair. Dysregulation of these processes can lead to a range of diseases, including cancer. Cell motility and adhesion are complex and often require regulation by an intricate network of signalling pathways, with phosphatidylinositol phosphates (PIPs) having a central role. PIPs are derived from phosphatidylinositol phosphorylation and are instrumental in mediating membrane dynamics, intracellular trafficking, cytoskeletal organization and signal transduction, all of which are crucial for cellular responses to environmental stimuli. Here we discuss the mechanisms through which PIPs modulate cell motility and adhesion by examining their roles at focal adhesions, within the cytoskeleton, at protein scaffolds and in the nucleus. By providing a comprehensive overview of PIP signalling, this Review underscores their significance in maintaining cellular homeostasis and highlights their potential as therapeutic targets in diseases characterized by aberrant cell motility and adhesion.
期刊介绍:
Nature Cell Biology, a prestigious journal, upholds a commitment to publishing papers of the highest quality across all areas of cell biology, with a particular focus on elucidating mechanisms underlying fundamental cell biological processes. The journal's broad scope encompasses various areas of interest, including but not limited to:
-Autophagy
-Cancer biology
-Cell adhesion and migration
-Cell cycle and growth
-Cell death
-Chromatin and epigenetics
-Cytoskeletal dynamics
-Developmental biology
-DNA replication and repair
-Mechanisms of human disease
-Mechanobiology
-Membrane traffic and dynamics
-Metabolism
-Nuclear organization and dynamics
-Organelle biology
-Proteolysis and quality control
-RNA biology
-Signal transduction
-Stem cell biology