{"title":"Spatially resolved transcriptomic analysis of the adult human prostate","authors":"Junyi Hu, Fei Liu, Jing Zhang, Lei Yin, Wanli Cao, Weidong Xu, Yifan Chang, Ye Wang, Jian Wang, Yaxin Hou, Lilong Liu, Sujun Chen, Guanghui Zhu, Junhui Jiang, Zixian Wang, Gong-Hong Wei, Housheng Hansen He, Di Gu, Ke Chen, Shancheng Ren","doi":"10.1038/s41588-025-02139-9","DOIUrl":null,"url":null,"abstract":"The prostate is an organ characterized by significant spatial heterogeneity. To better understand its intricate structure and cellular composition, we constructed a comprehensive single-cell atlas of the adult human prostate. Our high-resolution mapping effort identified 253,381 single cells and 34,876 nuclei sampled from 11 patients who underwent radical resection of bladder cancer, which were categorized into 126 unique subpopulations. This work revealed various new cell types in the human prostate and their specific spatial localization. Notably, we discovered four distinct acini, two of which were tightly associated with E-twenty-six transcription factor family (ETS)-fusion-negative prostate cancer. Through the integration of spatial, single-cell and bulk-seq analyses, we propose that two specific luminal cell types could serve as the common origins of prostate cancer. Additionally, our findings suggest that zone-specific fibroblasts may contribute to the observed heterogeneity among luminal cells. This atlas will serve as a valuable reference for studying prostate biology and diseases such as prostate cancer. Multi-omic analysis of the adult human prostate identifies spatially resolved cell populations with potential links to prostate carcinogenesis.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"57 4","pages":"922-933"},"PeriodicalIF":31.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41588-025-02139-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
The prostate is an organ characterized by significant spatial heterogeneity. To better understand its intricate structure and cellular composition, we constructed a comprehensive single-cell atlas of the adult human prostate. Our high-resolution mapping effort identified 253,381 single cells and 34,876 nuclei sampled from 11 patients who underwent radical resection of bladder cancer, which were categorized into 126 unique subpopulations. This work revealed various new cell types in the human prostate and their specific spatial localization. Notably, we discovered four distinct acini, two of which were tightly associated with E-twenty-six transcription factor family (ETS)-fusion-negative prostate cancer. Through the integration of spatial, single-cell and bulk-seq analyses, we propose that two specific luminal cell types could serve as the common origins of prostate cancer. Additionally, our findings suggest that zone-specific fibroblasts may contribute to the observed heterogeneity among luminal cells. This atlas will serve as a valuable reference for studying prostate biology and diseases such as prostate cancer. Multi-omic analysis of the adult human prostate identifies spatially resolved cell populations with potential links to prostate carcinogenesis.
期刊介绍:
Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation.
Integrative genetic topics comprise, but are not limited to:
-Genes in the pathology of human disease
-Molecular analysis of simple and complex genetic traits
-Cancer genetics
-Agricultural genomics
-Developmental genetics
-Regulatory variation in gene expression
-Strategies and technologies for extracting function from genomic data
-Pharmacological genomics
-Genome evolution