Grid-based transcutaneous spinal cord stimulation: probing neuromodulatory effect in spinal flexion reflex circuits.

Hyungtaek Kim, Subaryani Soedirdjo, Yu-Chen Chung, Kathryn Gray, Sofia Rita Cardoso Fernandes, Yasin Dhaher
{"title":"Grid-based transcutaneous spinal cord stimulation: probing neuromodulatory effect in spinal flexion reflex circuits.","authors":"Hyungtaek Kim, Subaryani Soedirdjo, Yu-Chen Chung, Kathryn Gray, Sofia Rita Cardoso Fernandes, Yasin Dhaher","doi":"10.1088/1741-2552/adc6bd","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Non-invasive spinal stimulation has the potential to modulate spinal excitability. This study explored the modulatory capacity of sub-motor grid-based transcutaneous spinal cord stimulation (tSCS) applied to the lumbar spinal cord in neurologically intact participants. Our objective was to examine the effect of grid spinal stimulation on polysynaptic reflex pathways involving motoneurons and interneurons likely activated by Aβ/δ fiber-mediated cutaneous afferents. &#xD;&#xD;Approach. Stimulation was delivered using two grid electrode montages, generating a net electric field in transverse or diagonal directions. We administered tSCS with the center of the grid aligned with the T10-T11 spinous process. Participants were seated for the 20-minute stimulation duration. At 30 minutes after the cessation of spinal stimulation, we examined neuromodulatory effects on spinal circuit excitability in the tibialis anterior muscle by employing the classical flexion reflex paradigms. Additionally, we evaluated spinal motoneuron excitability using the H-reflex paradigm in the soleus muscle to explore the differential effects of tSCS on the polysynaptic versus monosynaptic reflex pathway and to test the spatial extent of the grid stimulation. &#xD;&#xD;Main results. Our findings indicated significant neuromodulatory effects on the flexion reflex, resulting in a net inhibitory effect, regardless of the grid electrode montages. Our data further indicated that the flexion reflex duration was significantly shortened only by the diagonal montage.&#xD; &#xD;Significance: Our results suggest that grid-based tSCS may specifically modulate spinal activities associated with polysynaptic flexion reflex pathways, with the potential for grid-specific targeted neuromodulation.&#xD;&#xD;&#xD.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/adc6bd","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Non-invasive spinal stimulation has the potential to modulate spinal excitability. This study explored the modulatory capacity of sub-motor grid-based transcutaneous spinal cord stimulation (tSCS) applied to the lumbar spinal cord in neurologically intact participants. Our objective was to examine the effect of grid spinal stimulation on polysynaptic reflex pathways involving motoneurons and interneurons likely activated by Aβ/δ fiber-mediated cutaneous afferents. Approach. Stimulation was delivered using two grid electrode montages, generating a net electric field in transverse or diagonal directions. We administered tSCS with the center of the grid aligned with the T10-T11 spinous process. Participants were seated for the 20-minute stimulation duration. At 30 minutes after the cessation of spinal stimulation, we examined neuromodulatory effects on spinal circuit excitability in the tibialis anterior muscle by employing the classical flexion reflex paradigms. Additionally, we evaluated spinal motoneuron excitability using the H-reflex paradigm in the soleus muscle to explore the differential effects of tSCS on the polysynaptic versus monosynaptic reflex pathway and to test the spatial extent of the grid stimulation. Main results. Our findings indicated significant neuromodulatory effects on the flexion reflex, resulting in a net inhibitory effect, regardless of the grid electrode montages. Our data further indicated that the flexion reflex duration was significantly shortened only by the diagonal montage. Significance: Our results suggest that grid-based tSCS may specifically modulate spinal activities associated with polysynaptic flexion reflex pathways, with the potential for grid-specific targeted neuromodulation. .

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信