Research on adversarial identification methods for AI-generated image software Craiyon V3.

Weizheng Jin, Hao Luo, Yunqi Tang
{"title":"Research on adversarial identification methods for AI-generated image software Craiyon V3.","authors":"Weizheng Jin, Hao Luo, Yunqi Tang","doi":"10.1111/1556-4029.70034","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid development of diffusion models, AI generation technology can now generate very realistic images. If such AI-generated images are used as evidence, they may threaten judicial fairness. Taking the adversarial identification of images generated by Craiyon V3 software as an example, this paper studies the adversarial identification methods for AI-generated image software. First, an AI-generated image set containing 18,000 images is constructed using Craiyon V3; then, an AI-generated image detection model based on deep learning is selected, and a score-based likelihood ratio method is introduced to evaluate the strength of evidence. Experimental results show that the proposed method achieves an accuracy of over 99% on multiple threshold classifiers including Swin-Transformer, ResNet-18, and so on, and the fitted likelihood ratio model also passes a series of validation criteria including Tippett plots. The research results of this paper are expected to be applied to judicial practice in the future, providing judges with a reliable and powerful decision-making basis, and laying a foundation for further exploration of AI-generated image identification methods.</p>","PeriodicalId":94080,"journal":{"name":"Journal of forensic sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of forensic sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/1556-4029.70034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid development of diffusion models, AI generation technology can now generate very realistic images. If such AI-generated images are used as evidence, they may threaten judicial fairness. Taking the adversarial identification of images generated by Craiyon V3 software as an example, this paper studies the adversarial identification methods for AI-generated image software. First, an AI-generated image set containing 18,000 images is constructed using Craiyon V3; then, an AI-generated image detection model based on deep learning is selected, and a score-based likelihood ratio method is introduced to evaluate the strength of evidence. Experimental results show that the proposed method achieves an accuracy of over 99% on multiple threshold classifiers including Swin-Transformer, ResNet-18, and so on, and the fitted likelihood ratio model also passes a series of validation criteria including Tippett plots. The research results of this paper are expected to be applied to judicial practice in the future, providing judges with a reliable and powerful decision-making basis, and laying a foundation for further exploration of AI-generated image identification methods.

人工智能生成图像软件 Craiyon V3 的对抗识别方法研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信