{"title":"Research on adversarial identification methods for AI-generated image software Craiyon V3","authors":"Weizheng Jin MSc, Hao Luo PhD, Yunqi Tang PhD","doi":"10.1111/1556-4029.70034","DOIUrl":null,"url":null,"abstract":"<p>With the rapid development of diffusion models, AI generation technology can now generate very realistic images. If such AI-generated images are used as evidence, they may threaten judicial fairness. Taking the adversarial identification of images generated by Craiyon V3 software as an example, this paper studies the adversarial identification methods for AI-generated image software. First, an AI-generated image set containing 18,000 images is constructed using Craiyon V3; then, an AI-generated image detection model based on deep learning is selected, and a score-based likelihood ratio method is introduced to evaluate the strength of evidence. Experimental results show that the proposed method achieves an accuracy of over 99% on multiple threshold classifiers including Swin-Transformer, ResNet-18, and so on, and the fitted likelihood ratio model also passes a series of validation criteria including Tippett plots. The research results of this paper are expected to be applied to judicial practice in the future, providing judges with a reliable and powerful decision-making basis, and laying a foundation for further exploration of AI-generated image identification methods.</p>","PeriodicalId":15743,"journal":{"name":"Journal of forensic sciences","volume":"70 3","pages":"1044-1056"},"PeriodicalIF":1.5000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of forensic sciences","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1556-4029.70034","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid development of diffusion models, AI generation technology can now generate very realistic images. If such AI-generated images are used as evidence, they may threaten judicial fairness. Taking the adversarial identification of images generated by Craiyon V3 software as an example, this paper studies the adversarial identification methods for AI-generated image software. First, an AI-generated image set containing 18,000 images is constructed using Craiyon V3; then, an AI-generated image detection model based on deep learning is selected, and a score-based likelihood ratio method is introduced to evaluate the strength of evidence. Experimental results show that the proposed method achieves an accuracy of over 99% on multiple threshold classifiers including Swin-Transformer, ResNet-18, and so on, and the fitted likelihood ratio model also passes a series of validation criteria including Tippett plots. The research results of this paper are expected to be applied to judicial practice in the future, providing judges with a reliable and powerful decision-making basis, and laying a foundation for further exploration of AI-generated image identification methods.
期刊介绍:
The Journal of Forensic Sciences (JFS) is the official publication of the American Academy of Forensic Sciences (AAFS). It is devoted to the publication of original investigations, observations, scholarly inquiries and reviews in various branches of the forensic sciences. These include anthropology, criminalistics, digital and multimedia sciences, engineering and applied sciences, pathology/biology, psychiatry and behavioral science, jurisprudence, odontology, questioned documents, and toxicology. Similar submissions dealing with forensic aspects of other sciences and the social sciences are also accepted, as are submissions dealing with scientifically sound emerging science disciplines. The content and/or views expressed in the JFS are not necessarily those of the AAFS, the JFS Editorial Board, the organizations with which authors are affiliated, or the publisher of JFS. All manuscript submissions are double-blind peer-reviewed.