A synchronous control strategy of robot social behavior driven by scenario information and neural modulation mechanism.

Renkai Liu, Xiaorui Liu, Hang Su, Jinpeng Yu
{"title":"A synchronous control strategy of robot social behavior driven by scenario information and neural modulation mechanism.","authors":"Renkai Liu, Xiaorui Liu, Hang Su, Jinpeng Yu","doi":"10.1016/j.isatra.2025.03.002","DOIUrl":null,"url":null,"abstract":"<p><p>Robots have been widely employed in scenarios that involve various environmental factors and social individuals. As one kind of social companion, robot is supposed to obey human social protocol and display anthropomorphic behaviors. In this paper, we focus on the problem of robot behavior control in multi-individuals scenarios, and build a coordinated robot behavior model containing body movement/orientation, head rotation and eyeball movement. Within the proposed model, a synchronous control strategy based on social space theory and neural modulation mechanism is proposed. This strategy collects RGB-D camera stream and acoustic field data perceived from multi-individuals scenario, and controls the robot to complete movement and social gaze behaviors. As for the eye-head coordinated gaze behavior, it is modulated by a novel optimal control algorithm based on the minimum neural transmission noise. Above works are validated on the Xiaopang robot platform, the experimental observations indicate that the robot can achieve anthropomorphic response in dynamic multi-individuals scenario. Within above promising results, the effectiveness of this strategies could be proven.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2025.03.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Robots have been widely employed in scenarios that involve various environmental factors and social individuals. As one kind of social companion, robot is supposed to obey human social protocol and display anthropomorphic behaviors. In this paper, we focus on the problem of robot behavior control in multi-individuals scenarios, and build a coordinated robot behavior model containing body movement/orientation, head rotation and eyeball movement. Within the proposed model, a synchronous control strategy based on social space theory and neural modulation mechanism is proposed. This strategy collects RGB-D camera stream and acoustic field data perceived from multi-individuals scenario, and controls the robot to complete movement and social gaze behaviors. As for the eye-head coordinated gaze behavior, it is modulated by a novel optimal control algorithm based on the minimum neural transmission noise. Above works are validated on the Xiaopang robot platform, the experimental observations indicate that the robot can achieve anthropomorphic response in dynamic multi-individuals scenario. Within above promising results, the effectiveness of this strategies could be proven.

由场景信息和神经调制机制驱动的机器人社交行为同步控制策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信